{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": { "tags": [] }, "source": [ "# AIS Data Exploration\n", "\n", "> First notebook exploring coverage of AIS data. Data was extracted from the UN Global Platform (source data is from Spire / Exact Earth) \n", "\n", "- Coverage: December 2018 - August 2022\n", "- Ports: Tartus, Baniyas, Al Ladhiqiyah. 20 km buffer around each port" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "![image.png](images/AIS_Ports.JPG)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import os\n", "from os.path import join\n", "from glob import glob\n", "import pandas as pd\n", "import geopandas as gpd\n", "import folium\n", "from shapely.geometry import Point\n", "import folium.plugins as plugins\n", "import seaborn as sns\n", "from matplotlib import pyplot as plt" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "pd.options.display.max_columns = None" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "ais_dir = join(os.path.expanduser(\"~\"), \"data\", \"AIS\")\n", "data_dir = join(ais_dir, \"Syria\")" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "data_files = glob(data_dir + \"/*.csv\")" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "dfs = [pd.read_csv(f, index_col=0) for f in data_files]" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "df = pd.concat(dfs)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "tags": [ "output_scroll" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
H3_int_index_6message_typemmsidt_insert_utclongitudelatitudeimovessel_namecallsignvessel_typevessel_type_codevessel_type_cargovessel_classlengthwidthflag_countryflag_codedestinationetadraughtsogcogrotheadingnav_statusnav_status_codesourcedt_pos_utcdt_static_utcvessel_type_mainvessel_type_subeeidsource_filenameH3index_0H3_int_index_0H3_int_index_1H3_int_index_2H3_int_index_3H3_int_index_4H3_int_index_5H3_int_index_7H3_int_index_8H3_int_index_9H3_int_index_10H3_int_index_11H3_int_index_12H3_int_index_13H3_int_index_14H3_int_index_15polygon_namehex_resolution
900006042852360873574391355909000.02020-08-31 23:06:4535.76816735.5186679037276.0BEATA3FZK3CargoNaNNaNA130.018.0PanamaNaNSY ALD8271300.08.00.0180.00.0197.0Under Way Using Engine0.0T-AIS2020-08-31 23:06:452020-08-31 23:06:45Oil And Chemical TankerChemical TankerNaNs3a://ungp-ais-data-historical-backup/exact-ea...802dfffffffffff577269992861466623581769194442326015586271144802254847590774469551718399595278043409285119599781636594204671608788835681173503613292435295961087617796034922020863622299634549325823626803234176679935631306833804357119635810433431727551640314033059097991644817632686468486AL LADHIQIYAH6
900016042852360873574391355909000.02020-08-31 22:11:1535.76800035.5188339037276.0BEATA3FZK3CargoNaNNaNA130.018.0PanamaNaNSY ALD8271300.08.00.026.00.0197.0Under Way Using Engine0.0T-AIS2020-08-31 22:11:152020-08-31 22:11:15Oil And Chemical TankerChemical TankerNaNs3a://ungp-ais-data-historical-backup/exact-ea...802dfffffffffff577269992861466623581769194442326015586271144802254847590774469551718399595278043409285119599781636594204671608788835681173503613292435295961087617796034922020863622299634549325823626803234176671743631306833804040191635810433431410239640314033058780711644817632686151200AL LADHIQIYAH6
\n", "
" ], "text/plain": [ " H3_int_index_6 message_type mmsi dt_insert_utc \\\n", "90000 604285236087357439 1 355909000.0 2020-08-31 23:06:45 \n", "90001 604285236087357439 1 355909000.0 2020-08-31 22:11:15 \n", "\n", " longitude latitude imo vessel_name callsign vessel_type \\\n", "90000 35.768167 35.518667 9037276.0 BEATA 3FZK3 Cargo \n", "90001 35.768000 35.518833 9037276.0 BEATA 3FZK3 Cargo \n", "\n", " vessel_type_code vessel_type_cargo vessel_class length width \\\n", "90000 NaN NaN A 130.0 18.0 \n", "90001 NaN NaN A 130.0 18.0 \n", "\n", " flag_country flag_code destination eta draught sog cog \\\n", "90000 Panama NaN SY ALD 8271300.0 8.0 0.0 180.0 \n", "90001 Panama NaN SY ALD 8271300.0 8.0 0.0 26.0 \n", "\n", " rot heading nav_status nav_status_code source \\\n", "90000 0.0 197.0 Under Way Using Engine 0.0 T-AIS \n", "90001 0.0 197.0 Under Way Using Engine 0.0 T-AIS \n", "\n", " dt_pos_utc dt_static_utc vessel_type_main \\\n", "90000 2020-08-31 23:06:45 2020-08-31 23:06:45 Oil And Chemical Tanker \n", "90001 2020-08-31 22:11:15 2020-08-31 22:11:15 Oil And Chemical Tanker \n", "\n", " vessel_type_sub eeid \\\n", "90000 Chemical Tanker NaN \n", "90001 Chemical Tanker NaN \n", "\n", " source_filename H3index_0 \\\n", "90000 s3a://ungp-ais-data-historical-backup/exact-ea... 802dfffffffffff \n", "90001 s3a://ungp-ais-data-historical-backup/exact-ea... 802dfffffffffff \n", "\n", " H3_int_index_0 H3_int_index_1 H3_int_index_2 \\\n", "90000 577269992861466623 581769194442326015 586271144802254847 \n", "90001 577269992861466623 581769194442326015 586271144802254847 \n", "\n", " H3_int_index_3 H3_int_index_4 H3_int_index_5 \\\n", "90000 590774469551718399 595278043409285119 599781636594204671 \n", "90001 590774469551718399 595278043409285119 599781636594204671 \n", "\n", " H3_int_index_7 H3_int_index_8 H3_int_index_9 \\\n", "90000 608788835681173503 613292435295961087 617796034922020863 \n", "90001 608788835681173503 613292435295961087 617796034922020863 \n", "\n", " H3_int_index_10 H3_int_index_11 H3_int_index_12 \\\n", "90000 622299634549325823 626803234176679935 631306833804357119 \n", "90001 622299634549325823 626803234176671743 631306833804040191 \n", "\n", " H3_int_index_13 H3_int_index_14 H3_int_index_15 \\\n", "90000 635810433431727551 640314033059097991 644817632686468486 \n", "90001 635810433431410239 640314033058780711 644817632686151200 \n", "\n", " polygon_name hex_resolution \n", "90000 AL LADHIQIYAH 6 \n", "90001 AL LADHIQIYAH 6 " ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head(2)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "tags": [ "output_scroll" ] }, "outputs": [ { "data": { "text/plain": [ "Index(['H3_int_index_6', 'message_type', 'mmsi', 'dt_insert_utc', 'longitude',\n", " 'latitude', 'imo', 'vessel_name', 'callsign', 'vessel_type',\n", " 'vessel_type_code', 'vessel_type_cargo', 'vessel_class', 'length',\n", " 'width', 'flag_country', 'flag_code', 'destination', 'eta', 'draught',\n", " 'sog', 'cog', 'rot', 'heading', 'nav_status', 'nav_status_code',\n", " 'source', 'dt_pos_utc', 'dt_static_utc', 'vessel_type_main',\n", " 'vessel_type_sub', 'eeid', 'source_filename', 'H3index_0',\n", " 'H3_int_index_0', 'H3_int_index_1', 'H3_int_index_2', 'H3_int_index_3',\n", " 'H3_int_index_4', 'H3_int_index_5', 'H3_int_index_7', 'H3_int_index_8',\n", " 'H3_int_index_9', 'H3_int_index_10', 'H3_int_index_11',\n", " 'H3_int_index_12', 'H3_int_index_13', 'H3_int_index_14',\n", " 'H3_int_index_15', 'polygon_name', 'hex_resolution'],\n", " dtype='object')" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.columns" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Check unique vessel ids" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "df.loc[df.loc[:, \"mmsi\"].isna(), \"mmsi\"] = -1" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "df.loc[:, \"mmsi\"] = df.loc[:, \"mmsi\"].astype(\"int\")" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(98662, 498)" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(df), len(df.mmsi.unique())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Ports from WPI" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "wpi = pd.read_csv(join(ais_dir, \"wpi\", \"UpdatedPub150.csv\"))" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "wpi = wpi.loc[wpi[\"Country Code\"] == \"Syria\"].copy()" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "geoms = [Point(xy) for xy in zip(wpi.Longitude, wpi.Latitude)]\n", "wpi_gdf = gpd.GeoDataFrame(wpi, crs=\"EPSG:4326\", geometry=geoms)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "wpi_gdf = wpi_gdf.to_crs(\"EPSG:32636\")" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "wpi_gdf.loc[:, \"geometry\"] = wpi_gdf.buffer(20000) # 10000" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "wpi_gdf = wpi_gdf.to_crs(\"EPSG:4326\")" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "tags": [ "output_scroll" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
World Port Index NumberRegion NameMain Port NameAlternate Port NameUN/LOCODECountry CodeWorld Water BodyIHO S-130 Sea AreaSailing Direction or PublicationStandard Nautical Chart...Supplies - Diesel OilSupplies - Aviation FuelSupplies - DeckSupplies - EngineRepairsDry DockRailwayLatitudeLongitudegeometry
42245003Syria -- 45000TartusSY TTSSyriaMediterranean Sea; North Atlantic OceanSailing Directions Pub. 132 (Enroute) - Easter...56048...UnknownUnknownUnknownUnknownLimitedMediumMedium34.90000035.866667POLYGON ((36.08527 34.89464, 36.08356 34.87702...
86145005Syria -- 45000BaniyasSY BANSyriaMediterranean Sea; North Atlantic OceanSailing Directions Pub. 132 (Enroute) - Easter...56047...YesUnknownUnknownUnknownLimitedUnknownUnknown35.18333335.950000POLYGON ((36.16934 35.17779, 36.16760 35.16016...
136745010Syria -- 45000Al LadhiqiyahLatakiaSY ALDSyriaMediterranean Sea; North Atlantic OceanSailing Directions Pub. 132 (Enroute) - Easter...56048...YesUnknownYesYesLimitedLargeMedium35.53333335.766667POLYGON ((35.98700 35.52807, 35.98528 35.51045...
\n", "

3 rows × 108 columns

\n", "
" ], "text/plain": [ " World Port Index Number Region Name Main Port Name \\\n", "422 45003 Syria -- 45000 Tartus \n", "861 45005 Syria -- 45000 Baniyas \n", "1367 45010 Syria -- 45000 Al Ladhiqiyah \n", "\n", " Alternate Port Name UN/LOCODE Country Code \\\n", "422 SY TTS Syria \n", "861 SY BAN Syria \n", "1367 Latakia SY ALD Syria \n", "\n", " World Water Body IHO S-130 Sea Area \\\n", "422 Mediterranean Sea; North Atlantic Ocean \n", "861 Mediterranean Sea; North Atlantic Ocean \n", "1367 Mediterranean Sea; North Atlantic Ocean \n", "\n", " Sailing Direction or Publication \\\n", "422 Sailing Directions Pub. 132 (Enroute) - Easter... \n", "861 Sailing Directions Pub. 132 (Enroute) - Easter... \n", "1367 Sailing Directions Pub. 132 (Enroute) - Easter... \n", "\n", " Standard Nautical Chart ... Supplies - Diesel Oil \\\n", "422 56048 ... Unknown \n", "861 56047 ... Yes \n", "1367 56048 ... Yes \n", "\n", " Supplies - Aviation Fuel Supplies - Deck Supplies - Engine Repairs \\\n", "422 Unknown Unknown Unknown Limited \n", "861 Unknown Unknown Unknown Limited \n", "1367 Unknown Yes Yes Limited \n", "\n", " Dry Dock Railway Latitude Longitude \\\n", "422 Medium Medium 34.900000 35.866667 \n", "861 Unknown Unknown 35.183333 35.950000 \n", "1367 Large Medium 35.533333 35.766667 \n", "\n", " geometry \n", "422 POLYGON ((36.08527 34.89464, 36.08356 34.87702... \n", "861 POLYGON ((36.16934 35.17779, 36.16760 35.16016... \n", "1367 POLYGON ((35.98700 35.52807, 35.98528 35.51045... \n", "\n", "[3 rows x 108 columns]" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "wpi_gdf" ] }, { "cell_type": "code", "execution_count": 71, "metadata": {}, "outputs": [], "source": [ "wpi_gdf.loc[:, \"color\"] = [\"blue\", \"orange\", \"green\"]" ] }, { "cell_type": "code", "execution_count": 82, "metadata": {}, "outputs": [], "source": [ "def style_function(feature):\n", " idx = int(feature[\"id\"])\n", " color = wpi_gdf.loc[idx, \"color\"]\n", " return {\"fillOpacity\": 0.2, \"weight\": 0, \"fillColor\": color}" ] }, { "cell_type": "code", "execution_count": 83, "metadata": {}, "outputs": [], "source": [ "gdf_col = wpi_gdf.geometry.envelope.__geo_interface__" ] }, { "cell_type": "code", "execution_count": 84, "metadata": {}, "outputs": [], "source": [ "# df_sample = df.head(1000).copy()\n", "df_sample = df.copy()" ] }, { "cell_type": "code", "execution_count": 85, "metadata": {}, "outputs": [], "source": [ "df_sample.loc[:, \"bool\"] = 1" ] }, { "cell_type": "code", "execution_count": 92, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Make this Notebook Trusted to load map: File -> Trust Notebook
" ], "text/plain": [ "" ] }, "execution_count": 92, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[lat, lon] = buffer_df[[\"Latitude\", \"Longitude\"]].iloc[0].tolist()\n", "m = folium.Map(\n", " # location = [-8.102782\t,156.833900\t],\n", " location=[lat, lon],\n", " tiles=\"cartodbpositron\",\n", " zoom_start=8,\n", ")\n", "a = plugins.HeatMap(\n", " df_sample[[\"latitude\", \"longitude\"]].values, radius=2, blur=2, name=\"HeatMap\"\n", ").add_to(m)\n", "a = folium.GeoJson(gdf_col, name=\"BBox\", style_function=style_function).add_to(m)\n", "folium.LayerControl().add_to(m)\n", "m" ] }, { "cell_type": "code", "execution_count": 93, "metadata": {}, "outputs": [], "source": [ "df_mmsi = df.copy()" ] }, { "cell_type": "code", "execution_count": 96, "metadata": {}, "outputs": [], "source": [ "df_mmsi.drop_duplicates(\"mmsi\", inplace=True)" ] }, { "cell_type": "code", "execution_count": 108, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "498" ] }, "execution_count": 108, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(df_mmsi)" ] }, { "cell_type": "code", "execution_count": 98, "metadata": { "scrolled": true, "tags": [ "output_scroll" ] }, "outputs": [ { "data": { "text/plain": [ "['H3_int_index_6',\n", " 'message_type',\n", " 'mmsi',\n", " 'dt_insert_utc',\n", " 'longitude',\n", " 'latitude',\n", " 'imo',\n", " 'vessel_name',\n", " 'callsign',\n", " 'vessel_type',\n", " 'vessel_type_code',\n", " 'vessel_type_cargo',\n", " 'vessel_class',\n", " 'length',\n", " 'width',\n", " 'flag_country',\n", " 'flag_code',\n", " 'destination',\n", " 'eta',\n", " 'draught',\n", " 'sog',\n", " 'cog',\n", " 'rot',\n", " 'heading',\n", " 'nav_status',\n", " 'nav_status_code',\n", " 'source',\n", " 'dt_pos_utc',\n", " 'dt_static_utc',\n", " 'vessel_type_main',\n", " 'vessel_type_sub',\n", " 'eeid',\n", " 'source_filename',\n", " 'H3index_0',\n", " 'H3_int_index_0',\n", " 'H3_int_index_1',\n", " 'H3_int_index_2',\n", " 'H3_int_index_3',\n", " 'H3_int_index_4',\n", " 'H3_int_index_5',\n", " 'H3_int_index_7',\n", " 'H3_int_index_8',\n", " 'H3_int_index_9',\n", " 'H3_int_index_10',\n", " 'H3_int_index_11',\n", " 'H3_int_index_12',\n", " 'H3_int_index_13',\n", " 'H3_int_index_14',\n", " 'H3_int_index_15',\n", " 'polygon_name',\n", " 'hex_resolution']" ] }, "execution_count": 98, "metadata": {}, "output_type": "execute_result" } ], "source": [ "list(df_mmsi.columns)" ] }, { "cell_type": "code", "execution_count": 255, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Cargo 373\n", "Tanker 47\n", "Tug 18\n", "Unknown 13\n", "UNAVAILABLE 13\n", "Fishing 8\n", "Other 5\n", "Passenger 5\n", "Towing 4\n", "SAR 2\n", "WIG 2\n", "Port Tender 2\n", "Reserved 1\n", "Dredging 1\n", "Diving 1\n", "Law Enforcement 1\n", "Pleasure Craft 1\n", "Pilot 1\n", "Name: vessel_type, dtype: int64" ] }, "execution_count": 255, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_mmsi.vessel_type.value_counts()" ] }, { "cell_type": "code", "execution_count": 107, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "General Cargo Ship 107\n", "Bulk Carrier 67\n", "Container Ship 49\n", "Oil And Chemical Tanker 26\n", "Ro Ro Cargo Ship 16\n", "Specialized Cargo Ship 11\n", "Tug 8\n", "Fishing Vessel 4\n", "Service Ship 4\n", "Offshore Vessel 3\n", "Other Tanker 3\n", "Gas Tanker 3\n", "Other 1\n", "Pleasure Craft 1\n", "Name: vessel_type_main, dtype: int64" ] }, "execution_count": 107, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_mmsi.vessel_type_main.value_counts()" ] }, { "cell_type": "code", "execution_count": 106, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "Togo 61\n", "Panama 48\n", "Comoros 35\n", "Turkey 33\n", "Russian Federation 31\n", "Liberia 25\n", "Malta 24\n", "Palau 16\n", "Marshall Islands 16\n", "Belize 15\n", "Tanzania 15\n", "Iran 12\n", "Sierra Leone 11\n", "Antigua and Barbuda 11\n", "Japan 11\n", "Egypt 10\n", "Moldova 10\n", "Lebanon 8\n", "Italy 7\n", "Cyprus 7\n", "Norway 7\n", "Syria 7\n", "Singapore 6\n", "Saint Kitts and Nevis 5\n", "Cameroon 5\n", "South Korea 5\n", "China 5\n", "USA 4\n", "Bahamas 4\n", "Mozambique 3\n", "Netherlands 3\n", "Guyana 3\n", "Saint Vincent and the Grenadines 2\n", "Gibraltar 2\n", "Greece 2\n", "Hong Kong 2\n", "Cayman Islands 2\n", "Denmark 2\n", "Cook Islands 2\n", "Vanuatu 2\n", "Tuvalu 2\n", "Germany 1\n", "Taiwan 1\n", "Barbados 1\n", "Ireland 1\n", "Mongolia 1\n", "Equatorial Guinea 1\n", "Poland 1\n", "Zambia 1\n", "Luxembourg 1\n", "Brazil 1\n", "Honduras 1\n", "Spain 1\n", "Madeira 1\n", "Israel 1\n", "Name: flag_country, dtype: int64" ] }, "execution_count": 106, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_mmsi.flag_country.value_counts()" ] }, { "cell_type": "code", "execution_count": 111, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "90067 671350000\n", "90071 671700000\n", "90088 671032000\n", "90216 671158100\n", "90270 671259100\n", " ... \n", "61456 671211100\n", "71028 671218100\n", "73071 671265000\n", "76527 671662000\n", "88155 671456000\n", "Name: mmsi, Length: 61, dtype: int64" ] }, "execution_count": 111, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_mmsi.loc[df_mmsi.flag_country == \"Togo\", \"mmsi\"]" ] }, { "cell_type": "code", "execution_count": 237, "metadata": { "tags": [ "output_scroll" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
message_typemmsidt_insert_utclongitudelatitudeimovessel_namecallsignvessel_typevessel_type_codevessel_type_cargovessel_classlengthwidthflag_countryflag_codedestinationetadraughtsogcogrotheadingnav_statusnav_status_codesourcedt_pos_utcdt_static_utcvessel_type_mainvessel_type_subeeid
90071276717000002021-11-15 18:28:1335.8734.9016677405089.0PRINCESS HIYAM5VDW8Unknown100.0NaNA79.013.0Togo671.0NaN2460.00.00.0248.00.00.0Moored5.0S-AIS2021-11-15 18:27:552021-10-12 18:33:34Specialized Cargo ShipLivestock Carrier4.686739e+18
90072276717000002021-11-15 06:10:1635.8734.9016677405089.0PRINCESS HIYAM5VDW8Unknown100.0NaNA79.013.0Togo671.0NaN2460.00.00.0289.00.00.0Moored5.0S-AIS2021-11-15 06:09:572021-10-12 18:33:34Specialized Cargo ShipLivestock Carrier4.686739e+18
90073276717000002021-11-15 04:16:1735.8734.9016677405089.0PRINCESS HIYAM5VDW8Unknown100.0NaNA79.013.0Togo671.0NaN2460.00.00.0292.00.00.0Moored5.0S-AIS2021-11-15 04:15:542021-10-12 18:33:34Specialized Cargo ShipLivestock Carrier4.686739e+18
90074276717000002021-11-15 04:58:1335.8734.9016677405089.0PRINCESS HIYAM5VDW8Unknown100.0NaNA79.013.0Togo671.0NaN2460.00.00.0261.00.00.0Moored5.0S-AIS2021-11-15 04:57:562021-10-12 18:33:34Specialized Cargo ShipLivestock Carrier4.686739e+18
90477276717000002021-11-16 05:13:1135.8734.9016677405089.0PRINCESS HIYAM5VDW8Unknown100.0NaNA79.013.0Togo671.0NaN2460.00.00.0281.00.00.0Moored5.0S-AIS2021-11-16 05:12:582021-10-12 18:33:34Specialized Cargo ShipLivestock Carrier4.686739e+18
\n", "
" ], "text/plain": [ " message_type mmsi dt_insert_utc longitude latitude \\\n", "90071 27 671700000 2021-11-15 18:28:13 35.87 34.901667 \n", "90072 27 671700000 2021-11-15 06:10:16 35.87 34.901667 \n", "90073 27 671700000 2021-11-15 04:16:17 35.87 34.901667 \n", "90074 27 671700000 2021-11-15 04:58:13 35.87 34.901667 \n", "90477 27 671700000 2021-11-16 05:13:11 35.87 34.901667 \n", "\n", " imo vessel_name callsign vessel_type vessel_type_code \\\n", "90071 7405089.0 PRINCESS HIYAM 5VDW8 Unknown 100.0 \n", "90072 7405089.0 PRINCESS HIYAM 5VDW8 Unknown 100.0 \n", "90073 7405089.0 PRINCESS HIYAM 5VDW8 Unknown 100.0 \n", "90074 7405089.0 PRINCESS HIYAM 5VDW8 Unknown 100.0 \n", "90477 7405089.0 PRINCESS HIYAM 5VDW8 Unknown 100.0 \n", "\n", " vessel_type_cargo vessel_class length width flag_country flag_code \\\n", "90071 NaN A 79.0 13.0 Togo 671.0 \n", "90072 NaN A 79.0 13.0 Togo 671.0 \n", "90073 NaN A 79.0 13.0 Togo 671.0 \n", "90074 NaN A 79.0 13.0 Togo 671.0 \n", "90477 NaN A 79.0 13.0 Togo 671.0 \n", "\n", " destination eta draught sog cog rot heading nav_status \\\n", "90071 NaN 2460.0 0.0 0.0 248.0 0.0 0.0 Moored \n", "90072 NaN 2460.0 0.0 0.0 289.0 0.0 0.0 Moored \n", "90073 NaN 2460.0 0.0 0.0 292.0 0.0 0.0 Moored \n", "90074 NaN 2460.0 0.0 0.0 261.0 0.0 0.0 Moored \n", "90477 NaN 2460.0 0.0 0.0 281.0 0.0 0.0 Moored \n", "\n", " nav_status_code source dt_pos_utc dt_static_utc \\\n", "90071 5.0 S-AIS 2021-11-15 18:27:55 2021-10-12 18:33:34 \n", "90072 5.0 S-AIS 2021-11-15 06:09:57 2021-10-12 18:33:34 \n", "90073 5.0 S-AIS 2021-11-15 04:15:54 2021-10-12 18:33:34 \n", "90074 5.0 S-AIS 2021-11-15 04:57:56 2021-10-12 18:33:34 \n", "90477 5.0 S-AIS 2021-11-16 05:12:58 2021-10-12 18:33:34 \n", "\n", " vessel_type_main vessel_type_sub eeid \n", "90071 Specialized Cargo Ship Livestock Carrier 4.686739e+18 \n", "90072 Specialized Cargo Ship Livestock Carrier 4.686739e+18 \n", "90073 Specialized Cargo Ship Livestock Carrier 4.686739e+18 \n", "90074 Specialized Cargo Ship Livestock Carrier 4.686739e+18 \n", "90477 Specialized Cargo Ship Livestock Carrier 4.686739e+18 " ] }, "execution_count": 237, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.loc[\n", " df.mmsi == 671700000,\n", " [\n", " \"message_type\",\n", " \"mmsi\",\n", " \"dt_insert_utc\",\n", " \"longitude\",\n", " \"latitude\",\n", " \"imo\",\n", " \"vessel_name\",\n", " \"callsign\",\n", " \"vessel_type\",\n", " \"vessel_type_code\",\n", " \"vessel_type_cargo\",\n", " \"vessel_class\",\n", " \"length\",\n", " \"width\",\n", " \"flag_country\",\n", " \"flag_code\",\n", " \"destination\",\n", " \"eta\",\n", " \"draught\",\n", " \"sog\",\n", " \"cog\",\n", " \"rot\",\n", " \"heading\",\n", " \"nav_status\",\n", " \"nav_status_code\",\n", " \"source\",\n", " \"dt_pos_utc\",\n", " \"dt_static_utc\",\n", " \"vessel_type_main\",\n", " \"vessel_type_sub\",\n", " \"eeid\",\n", " ],\n", "].head()" ] }, { "cell_type": "code", "execution_count": 238, "metadata": {}, "outputs": [], "source": [ "df.loc[:, \"dt_pos_utc\"] = pd.to_datetime(df.dt_insert_utc)" ] }, { "cell_type": "code", "execution_count": 239, "metadata": {}, "outputs": [], "source": [ "df.loc[:, \"day\"] = df.loc[:, \"dt_pos_utc\"].dt.strftime(\"%Y-%m-%d\")\n", "df.loc[:, \"month\"] = df.loc[:, \"dt_pos_utc\"].dt.strftime(\"%Y-%m\")" ] }, { "cell_type": "code", "execution_count": 240, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
mmsidaymonth
900003559090002020-08-312020-08
900013559090002020-08-312020-08
900023559090002020-08-312020-08
900033559090002020-08-312020-08
900043559090002020-08-312020-08
\n", "
" ], "text/plain": [ " mmsi day month\n", "90000 355909000 2020-08-31 2020-08\n", "90001 355909000 2020-08-31 2020-08\n", "90002 355909000 2020-08-31 2020-08\n", "90003 355909000 2020-08-31 2020-08\n", "90004 355909000 2020-08-31 2020-08" ] }, "execution_count": 240, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[[\"mmsi\", \"day\", \"month\"]].head()" ] }, { "cell_type": "code", "execution_count": 242, "metadata": {}, "outputs": [], "source": [ "df_raw = df.copy()" ] }, { "cell_type": "code", "execution_count": 261, "metadata": {}, "outputs": [], "source": [ "df = df_raw.copy()" ] }, { "cell_type": "code", "execution_count": 262, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array(['Cargo', 'Tug', 'Unknown', 'Tanker', 'Towing', 'UNAVAILABLE',\n", " 'SAR', 'Other', 'Reserved', 'Passenger', 'Fishing', 'Dredging',\n", " 'WIG', 'Diving', 'Law Enforcement', 'Port Tender',\n", " 'Pleasure Craft', 'Pilot'], dtype=object)" ] }, "execution_count": 262, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_mmsi.vessel_type.unique()" ] }, { "cell_type": "code", "execution_count": 263, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array(['Oil And Chemical Tanker', 'Container Ship', nan,\n", " 'General Cargo Ship', 'Bulk Carrier', 'Specialized Cargo Ship',\n", " 'Ro Ro Cargo Ship', 'Offshore Vessel', 'Other', 'Tug',\n", " 'Other Tanker', 'Fishing Vessel', 'Service Ship', 'Gas Tanker',\n", " 'Pleasure Craft'], dtype=object)" ] }, "execution_count": 263, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_mmsi.vessel_type_main.unique()" ] }, { "cell_type": "code", "execution_count": 264, "metadata": {}, "outputs": [], "source": [ "accepted = [\"Cargo\"]\n", "# accepted = ['Oil And Chemical Tanker', 'Container Ship',\n", "# 'General Cargo Ship', 'Bulk Carrier', 'Specialized Cargo Ship',\n", "# 'Ro Ro Cargo Ship', 'Other Tanker', 'Gas Tanker']" ] }, { "cell_type": "code", "execution_count": 265, "metadata": {}, "outputs": [], "source": [ "df = df.loc[df.vessel_type.isin(accepted)].copy()\n", "# df = df.loc[df.vessel_type_main.isin(accepted)].copy()" ] }, { "cell_type": "code", "execution_count": 267, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array(['Oil And Chemical Tanker', 'Container Ship', nan,\n", " 'General Cargo Ship', 'Bulk Carrier', 'Ro Ro Cargo Ship',\n", " 'Specialized Cargo Ship', 'Offshore Vessel', 'Other',\n", " 'Service Ship', 'Fishing Vessel', 'Tug'], dtype=object)" ] }, "execution_count": 267, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.vessel_type_main.unique()" ] }, { "cell_type": "code", "execution_count": 266, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Moored 43015\n", "Under Way Using Engine 27537\n", "At Anchor 22841\n", "Not Under Command 2823\n", "Underway Sailing 1653\n", "Restricted Manoeuvrability 565\n", "Not Defined 160\n", "Engaged In Fishing 41\n", "Unknown 27\n", "Name: nav_status, dtype: int64" ] }, "execution_count": 266, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_raw.nav_status.value_counts()" ] }, { "cell_type": "code", "execution_count": 248, "metadata": { "tags": [ "output_scroll" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
H3_int_index_6message_typemmsidt_insert_utclongitudelatitudeimovessel_namecallsignvessel_typevessel_type_codevessel_type_cargovessel_classlengthwidthflag_countryflag_codedestinationetadraughtsogcogrotheadingnav_statusnav_status_codesourcedt_pos_utcdt_static_utcvessel_type_mainvessel_type_subeeidsource_filenameH3index_0H3_int_index_0H3_int_index_1H3_int_index_2H3_int_index_3H3_int_index_4H3_int_index_5H3_int_index_7H3_int_index_8H3_int_index_9H3_int_index_10H3_int_index_11H3_int_index_12H3_int_index_13H3_int_index_14H3_int_index_15polygon_namehex_resolutiondaymonth
060428523581892198313129450002018-12-02 19:31:2135.75975035.5265429197935.0TRUEBORNV3XY4CargoNaNNaNA171.027.0BelizeNaNODESA12271800.06.00.1241.30.078.0Under Way Using Engine0.0S-AIS2018-12-02 19:31:212018-12-02 19:31:21Bulk CarrierNaNNaNs3a://ungp-ais-data-historical-backup/exact-ea...802dfffffffffff577269992861466623581769194442326015586271144802254847590774469551718399595278043409285119599781636594204671608788835681173503613292435304349695617796034930147327622299634557386751626803234184744959631306833812112895635810433439485183640314033066853679644817632694224173AL LADHIQIYAH62018-12-022018-12
160428523581892198313129450002018-12-03 07:09:2735.75975035.5265009197935.0TRUEBORNV3XY4CargoNaNNaNA171.027.0BelizeNaNPOR SAID12271800.06.00.0309.00.078.0Under Way Using Engine0.0S-AIS2018-12-03 07:09:272018-12-03 07:09:27Bulk CarrierNaNNaNs3a://ungp-ais-data-historical-backup/exact-ea...802dfffffffffff577269992861466623581769194442326015586271144802254847590774469551718399595278043409285119599781636594204671608788835681173503613292435304349695617796034930147327622299634557386751626803234184744959631306833812112895635810433439483199640314033066853639644817632694224134AL LADHIQIYAH62018-12-032018-12
360428523608735743913129450002018-12-05 10:00:3535.76770035.5177509197935.0TRUEBORNV3XY4CargoNaNNaNA171.027.0BelizeNaNPOR SAID12271800.06.00.0141.00.0198.0Under Way Using Engine0.0S-AIS2018-12-05 10:00:352018-12-05 10:00:35Bulk CarrierNaNNaNs3a://ungp-ais-data-historical-backup/exact-ea...802dfffffffffff577269992861466623581769194442326015586271144802254847590774469551718399595278043409285119599781636594204671608788835681173503613292435295961087617796034922020863622299634549161983626803234176507903631306833803876863635810433431246911640314033058617391644817632685987886AL LADHIQIYAH62018-12-052018-12
260428523581892198336360926692018-12-05 18:37:5235.76803335.5266009430870.0HANSA NEUBURGD5KB8CargoNaNNaNA175.027.0LiberiaNaNPIRAEUS12281400.07.90.0101.00.0228.0Moored5.0S-AIS2018-12-05 18:37:522018-12-05 18:37:52Container ShipNaNNaNs3a://ungp-ais-data-historical-backup/exact-ea...802dfffffffffff577269992861466623581769194442326015586271144802254847590774469551718399595278043409285119599781636594204671608788835362406399613292434987679743617796034613739519622299634240913407626803233868279807631306833495649279635810433123019391640314032750389855644817632377760348AL LADHIQIYAH62018-12-052018-12
460428523581892198312710446332018-12-06 23:16:3235.73595035.5363789106479.0MED CORLUTCA4362CargoNaNNaNA0.00.0TurkeyNaNLBBEY12302200.06.13.974.60.092.0Under Way Using Engine0.0S-AIS2018-12-06 23:16:322018-12-06 23:16:32Container ShipNaNNaNs3a://ungp-ais-data-historical-backup/exact-ea...802dfffffffffff577269992861466623581769194442326015586271144802254847590774469551718399595278043409285119599781636594204671608788835429515263613292435054788607617796034681634815622299634308775935626803233936117759631306833563487231635810433190857535640314032818227999644817632445598494AL LADHIQIYAH62018-12-062018-12
\n", "
" ], "text/plain": [ " H3_int_index_6 message_type mmsi dt_insert_utc \\\n", "0 604285235818921983 1 312945000 2018-12-02 19:31:21 \n", "1 604285235818921983 1 312945000 2018-12-03 07:09:27 \n", "3 604285236087357439 1 312945000 2018-12-05 10:00:35 \n", "2 604285235818921983 3 636092669 2018-12-05 18:37:52 \n", "4 604285235818921983 1 271044633 2018-12-06 23:16:32 \n", "\n", " longitude latitude imo vessel_name callsign vessel_type \\\n", "0 35.759750 35.526542 9197935.0 TRUEBORN V3XY4 Cargo \n", "1 35.759750 35.526500 9197935.0 TRUEBORN V3XY4 Cargo \n", "3 35.767700 35.517750 9197935.0 TRUEBORN V3XY4 Cargo \n", "2 35.768033 35.526600 9430870.0 HANSA NEUBURG D5KB8 Cargo \n", "4 35.735950 35.536378 9106479.0 MED CORLU TCA4362 Cargo \n", "\n", " vessel_type_code vessel_type_cargo vessel_class length width \\\n", "0 NaN NaN A 171.0 27.0 \n", "1 NaN NaN A 171.0 27.0 \n", "3 NaN NaN A 171.0 27.0 \n", "2 NaN NaN A 175.0 27.0 \n", "4 NaN NaN A 0.0 0.0 \n", "\n", " flag_country flag_code destination eta draught sog cog rot \\\n", "0 Belize NaN ODESA 12271800.0 6.0 0.1 241.3 0.0 \n", "1 Belize NaN POR SAID 12271800.0 6.0 0.0 309.0 0.0 \n", "3 Belize NaN POR SAID 12271800.0 6.0 0.0 141.0 0.0 \n", "2 Liberia NaN PIRAEUS 12281400.0 7.9 0.0 101.0 0.0 \n", "4 Turkey NaN LBBEY 12302200.0 6.1 3.9 74.6 0.0 \n", "\n", " heading nav_status nav_status_code source \\\n", "0 78.0 Under Way Using Engine 0.0 S-AIS \n", "1 78.0 Under Way Using Engine 0.0 S-AIS \n", "3 198.0 Under Way Using Engine 0.0 S-AIS \n", "2 228.0 Moored 5.0 S-AIS \n", "4 92.0 Under Way Using Engine 0.0 S-AIS \n", "\n", " dt_pos_utc dt_static_utc vessel_type_main vessel_type_sub \\\n", "0 2018-12-02 19:31:21 2018-12-02 19:31:21 Bulk Carrier NaN \n", "1 2018-12-03 07:09:27 2018-12-03 07:09:27 Bulk Carrier NaN \n", "3 2018-12-05 10:00:35 2018-12-05 10:00:35 Bulk Carrier NaN \n", "2 2018-12-05 18:37:52 2018-12-05 18:37:52 Container Ship NaN \n", "4 2018-12-06 23:16:32 2018-12-06 23:16:32 Container Ship NaN \n", "\n", " eeid source_filename H3index_0 \\\n", "0 NaN s3a://ungp-ais-data-historical-backup/exact-ea... 802dfffffffffff \n", "1 NaN s3a://ungp-ais-data-historical-backup/exact-ea... 802dfffffffffff \n", "3 NaN s3a://ungp-ais-data-historical-backup/exact-ea... 802dfffffffffff \n", "2 NaN s3a://ungp-ais-data-historical-backup/exact-ea... 802dfffffffffff \n", "4 NaN s3a://ungp-ais-data-historical-backup/exact-ea... 802dfffffffffff \n", "\n", " H3_int_index_0 H3_int_index_1 H3_int_index_2 \\\n", "0 577269992861466623 581769194442326015 586271144802254847 \n", "1 577269992861466623 581769194442326015 586271144802254847 \n", "3 577269992861466623 581769194442326015 586271144802254847 \n", "2 577269992861466623 581769194442326015 586271144802254847 \n", "4 577269992861466623 581769194442326015 586271144802254847 \n", "\n", " H3_int_index_3 H3_int_index_4 H3_int_index_5 \\\n", "0 590774469551718399 595278043409285119 599781636594204671 \n", "1 590774469551718399 595278043409285119 599781636594204671 \n", "3 590774469551718399 595278043409285119 599781636594204671 \n", "2 590774469551718399 595278043409285119 599781636594204671 \n", "4 590774469551718399 595278043409285119 599781636594204671 \n", "\n", " H3_int_index_7 H3_int_index_8 H3_int_index_9 \\\n", "0 608788835681173503 613292435304349695 617796034930147327 \n", "1 608788835681173503 613292435304349695 617796034930147327 \n", "3 608788835681173503 613292435295961087 617796034922020863 \n", "2 608788835362406399 613292434987679743 617796034613739519 \n", "4 608788835429515263 613292435054788607 617796034681634815 \n", "\n", " H3_int_index_10 H3_int_index_11 H3_int_index_12 \\\n", "0 622299634557386751 626803234184744959 631306833812112895 \n", "1 622299634557386751 626803234184744959 631306833812112895 \n", "3 622299634549161983 626803234176507903 631306833803876863 \n", "2 622299634240913407 626803233868279807 631306833495649279 \n", "4 622299634308775935 626803233936117759 631306833563487231 \n", "\n", " H3_int_index_13 H3_int_index_14 H3_int_index_15 polygon_name \\\n", "0 635810433439485183 640314033066853679 644817632694224173 AL LADHIQIYAH \n", "1 635810433439483199 640314033066853639 644817632694224134 AL LADHIQIYAH \n", "3 635810433431246911 640314033058617391 644817632685987886 AL LADHIQIYAH \n", "2 635810433123019391 640314032750389855 644817632377760348 AL LADHIQIYAH \n", "4 635810433190857535 640314032818227999 644817632445598494 AL LADHIQIYAH \n", "\n", " hex_resolution day month \n", "0 6 2018-12-02 2018-12 \n", "1 6 2018-12-03 2018-12 \n", "3 6 2018-12-05 2018-12 \n", "2 6 2018-12-05 2018-12 \n", "4 6 2018-12-06 2018-12 " ] }, "execution_count": 248, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.sort_values(\"day\").head()" ] }, { "cell_type": "code", "execution_count": 249, "metadata": {}, "outputs": [], "source": [ "# df_port = df[['mmsi', 'day', 'polygon_name']].groupby(['polygon_name', 'day']).nunique()\n", "df_port = (\n", " df[[\"mmsi\", \"month\", \"polygon_name\"]].groupby([\"polygon_name\", \"month\"]).nunique()\n", ")" ] }, { "cell_type": "code", "execution_count": 250, "metadata": {}, "outputs": [], "source": [ "df_port.reset_index(inplace=True)" ] }, { "cell_type": "code", "execution_count": 251, "metadata": {}, "outputs": [], "source": [ "# df_port.loc[:, 'date'] = pd.to_datetime(df_port.day)\n", "df_port.loc[:, \"date\"] = pd.to_datetime(df_port.month)" ] }, { "cell_type": "code", "execution_count": 252, "metadata": {}, "outputs": [], "source": [ "df_port = df_port.loc[df_port.polygon_name != \"BANIYAS\"]" ] }, { "cell_type": "code", "execution_count": 253, "metadata": {}, "outputs": [], "source": [ "# sns.set(font_scale = 1.5) # sns.set_style(\"white\")\n", "sns.set_theme(style=\"whitegrid\", font_scale=1.5)" ] }, { "cell_type": "code", "execution_count": 254, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 254, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAAGECAYAAAD6PtKMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAADd7UlEQVR4nOzdd3hT1/nA8a/kvfe28cIyxgabEWYIO4SREMhOIKPZm4w2SZtf27RpQlbT7EFGs3coO4QVCHvabAMe4IH3lDxl3d8f1xI2lm3JliwZzud58jhcXV0dy7L86pz3fY9CkiQJQRAEQRAEQbATSlsPQBAEQRAEQRDaEgGqIAiCIAiCYFdEgCoIgiAIgiDYFRGgCoIgCIIgCHZFBKiCIAiCIAiCXREBqiAIgiAIgmBXRIAqCBeIxMREnn76aVsPo0fq6+t5/vnnmTRpEklJSUyZMsUm49i1axeJiYn8/PPPNnl8AaZMmcLChQttPQzBiP78HiP0PyJAFYQu6AOWxMREvv/+e6PnJCYmcu+99/bxyC4sS5Ys4YsvvmDmzJm8+OKL/PnPf7b1kAThovTWW2+xfv16Ww9DEHC09QAEob946623uOqqq3B1dbX1UC4427dvR6VS8dRTT9l0HJdccgkHDx7E0VG8NQoXp7fffpt58+Yxbdo0Ww9FuMiJGVRBMEFKSgolJSV89tlnth6KXWhpaaG+vt5i1ystLcXX19di1+sppVKJi4sLDg4Oth6K0E+p1WpbD0EQLggiQBUEE8ycOZPk5GSWLFlCZWVlt+d3lqv1888/k5iYyK5duwzH3nrrLRITEzl16hT/+te/uPTSS0lNTeW2224jOzsbgF9//ZV58+YxdOhQpkyZwnfffdfpY2/fvp3rr7+e1NRUxo8fz/PPP49Go+lwXm1tLa+88grTp08nJSWFMWPG8Pjjj5OXl2d0zNu3b+edd95h2rRpDB06lDVr1nT5HGi1Wj788ENmzZrFkCFDGD16NA8++CCZmZkdrp2fn8/u3bsN6RRvvfVWp9ftKk/06aefJjExsd2xhQsXMmXKFIqLi3n88ce55JJLSE1N5c477yQnJ8eka1dXV/Pss88yevRo0tLSWLhwIYcPHzZcuy1zfvZg+s/BmFdeeYXExESOHz/e4bba2lqGDh3KAw880O749u3b+cMf/sDIkSMZMmQIV155Jd98802H++/fv5+77rqL8ePHM2TIECZMmMDdd99Nenq64ZyqqipeeOEFpk2bZvgZz58/n48++qjD9VavXs1NN93EsGHDSE1N5brrruOXX37p9ns0dSyd0f+M8vLyuP/++xkxYgTDhw/nwQcfNPocS5LE119/zfz580lNTWXYsGEsXLiQnTt3tjsvPz/f8FpdvXo18+fPZ+jQoTz//PNdjkefY3v8+HFuv/12hg0bxtixY1m8eDFarZbGxkZeeuklJkyYwJAhQ7jlllvIysrqcJ2Kigqee+45Jk6cSEpKChMnTuS5557r8P6kf93t2LGDjz/+mGnTppGSksKMGTNYunRph+8HYOnSpYbfxfN/nwAOHDjAggULSEtLY/To0fzlL38x+h4jCL0h1rEEwQQKhYInn3ySO+64g/fff59nnnnG4o/x1FNP4e7uzr333ktFRQWffvopd911F4888givvvoqN954I9dccw0//vgjf/3rX4mPj2fkyJHtrnHkyBHWrl3Lddddx9y5c9m1axdffPEFJ0+e5NNPP0WplD+T1tbWcuONN1JYWMg111xDQkICpaWlfP3111x33XX89NNPREREtLv2Sy+9hFar5frrr8fDw4PY2Nguv58nn3ySNWvWMH78eG666SbKysr46quvuPHGG/nqq68YPHgwl1xyCS+//DIvvvgifn5+3HfffQBG/yj2Rl1dHQsWLCA1NZXHHnuM/Px8Pv/8cx544AFWrlzZ5Yxpc3Mzd955J4cOHWLu3LmkpqZy/Phx7rjjjl7P+vbk59DWvHnz+Oijj1i2bBmDBg1qd9uaNWtobGxk3rx5hmPfffcdf/vb30hLS+O+++7Dzc2N7du38/e//50zZ84YUiyys7P5wx/+QGBgILfeeisBAQGUl5ezb98+jh8/TlpaGgCPPvooe/fu5cYbbyQxMZGGhgaysrLYvXs3d911l+FxX3/9dd5//30mTJjAo48+ilKpZN26dTz66KP89a9/5ZZbbun0ezR1LF2pq6tj4cKFDB06lMcff5zTp0/z9ddfk5GRwdKlSwkKCjKc+8c//pFVq1YxY8YM5s+fT1NTEytWrOAPf/gDb731FlOnTm137fXr1/PFF19w0003ceONN+Lp6dnteIqKirjjjjuYNWsWM2bMYNu2bXz66ac4ODhw6tQpGhoauOeee6isrOSTTz7hgQceYM2aNe1+f2+66SZOnz7NNddcw+DBgzl27BjffPMNO3fu5Icffugwjtdff52GhgZuuOEGnJ2d+eabb3j66acZMGAAI0aMwN/fn5dffpk//elPjBw5kuuvv97o2I8dO8Z9993H/PnzmTNnDrt37+bHH39EqVTyz3/+s9vvXRBMJgmC0KmdO3dKKpVK+uijjyRJkqQ77rhDSklJkfLz8w3nqFQq6Z577ml3P5VKJT311FMdrvfTTz9JKpVK2rlzp+HYm2++KalUKunee++VdDqd4fhnn30mqVQqadiwYVJhYaHheHl5uZSSkiI99thjHR5TpVJJ69ata3f8n//8p6RSqaSVK1e2OzZkyBDp2LFj7c7Nz8+Xhg0b1m7s+jFffvnlUl1dXedPVhtbt26VVCqV9Oijj7b7no4dOyYlJSVJN910U7vzJ0+eLC1YsMCka+t/Jj/99FOH25566ilJpVK1O7ZgwQJJpVJJH374YbvjS5YskVQqlbRly5Yur/3tt99KKpVKeuONN9rd/9NPP5VUKpU0efLkdsfN+dmb83PozPz586Xx48dLWq223fGbbrpJGjVqlNTY2ChJkiQVFxdLKSkp0uOPP97hGv/85z+lQYMGSWfOnJEk6dxrLyMjo9PHrampkVQqlfS3v/2ty/EdPnxYUqlU0muvvdbhtvvvv18aNmyYVFtbazh2/mvBlLF0Rf/zf/7559sd//XXXyWVSiX93//9X4dj3377bbtzm5ubpXnz5kmTJ082vJ7z8vIklUolDR48WDp16pTJ45k8ebKkUqmk1atXtzs+b948KTExUbrvvvuMvg+0fZ3++9//llQqlfTll1+2u8aXX34pqVQq6fXXXzcc07/u5s6da3gtSJIkFRUVScnJyUbfRzp73alUKikxMVFKT09vd/zuu++WBg8eLKnVatOeBEEwgVjiFwQzPPnkkzQ3N/PGG29Y/NoLFy5EoVAY/q2fHZ0yZQphYWGG4/7+/sTGxpKbm9vhGrGxsR2KG+655x4A1q1bB8hLmCtWrOCSSy4hODiYiooKw39ubm6kpaWxdevWDte+6aabcHNzM+l70T/Wfffd1+57GjRoEJMnT2bfvn1UVFSYdC1LUCqV3Hrrre2OjRkzBoDTp093ed/169fj4ODAH/7wh3bHb775ZpNmyzrT05/D+ebNm0dpaSnbtm0zHMvLy2P//v3MmTMHZ2dnANauXUtTUxPXXnttu8eqqKhgypQp6HQ6tm/fDoCXlxcAGzZsoLGx0ejjuri44OzszMGDB8nPz+90fCtWrEChUHD11VcbfVyNRtPlUr0pYzGF/vdAb/r06cTGxrJhwwbDseXLl+Ph4cG0adPajbOmpoYpU6ZQUFDQ4fdu4sSJxMfHmzWWkJAQZs6c2e7Y8OHDkSSp0/eBtq/TdevW4e/vzw033NDuGjfccAP+/v5Gq/Bvvvlmw2tBP4bO3ke6kpaWRmpqartjY8aMQavVUlBQYNa1BKErYolfEMwwePBgZs+ebVjyO39ZtTeioqLa/dvb2xuAyMjIDuf6+PgY/WNg7A9lcHAw3t7ehny7iooKqqqq2Lp1K2PHjjU6Fv1SYlvdLem3lZ+fj1KpNDqegQMHsn79evLz8/H39zf5mr0RHByMi4tLu2P65fmqqqou75uXl0dQUFCHYNTZ2ZmoqChqamp6NKae/hzON3v2bBYvXsyyZcu47LLLAFi2bBmSJDF37lzDefo8xttvv73Ta5WVlRmuuXz5ct5//33++9//kpqayqWXXsrs2bMNKQfOzs78+c9/5l//+hdTp05l4MCBjBkzhmnTprX7frKyspAkqUNAZuxxO/v+uhtLd7y9vdst4+vFx8ezfv166urqcHd3JysrC41Gw7hx4zq9Vnl5ebvfhZiYGJPG0FZnv9PGbtO/D7R9nebn55OSktKh24SjoyMxMTEcPXq0w/XPf38B+XfA3KCys+ucP0ZB6C0RoAqCmRYtWsTatWt59dVXjRaDdKWlpaXT2zoLRixdUS5JEgDjxo3j7rvvNvl+9tJeq+3s0vm0Wq3R4109h/rnw9rO/9n39OdwPj8/PyZOnMj69etRq9V4enqybNky4uPjGTp0aIfHe+mllwgODjZ6LX3w4ezszKeffsrBgwf5/fff2bt3L2+++SZvv/02r732GtOnTwfkWfWpU6eyefNmdu/ezdq1a/nyyy+ZNWsWr7/+uuFxFQoFS5Ys6fTnMHDgwE6/P1PHYgmSJOHv789rr73W6TkJCQnt/m3qqkJbXb0eO3sf6O3r1JQPO6awh98l4eIgAlRBMFNUVBQ33XQTn3/+eYeKbD1fX1+jswmmVGb3hrFq35KSEmpqagzBh7+/P97e3qjV6i5ninojKioKnU5HVlZWh1lm/RiNzSKZQj/TVF1d3eG2rpaaeyoqKopt27YZgj+9pqYm8vLyDOPRM/Vnb8mfw7x581i/fj2//PILsbGxnDlzhieeeKLdOfqZPj8/P5Mfb+jQoYYg9+zZs1x99dX85z//aRcUBgcHc91113HdddfR0tLCn/70J1auXMkdd9zB0KFDiYmJ4ffffyc8PNzspXBzx9KZmpoaSktLO8yiZmVlERAQgLu7OwDR0dHk5uaSmpqKh4dHj8dqbVFRUeTk5KDVatvNomq1WnJzc43OcgpCfyNyUAWhB+6//348PT155ZVXjN4eExNDenp6u16h1dXVVt9CMycnp0P+2ZIlSwAMualKpZIrr7ySgwcPdtrmp7y8vFfj0D/Whx9+2G5W5cSJE2zcuNFQNdwTkZGRODo6GvIl9fbv329S2yFzTZ06lZaWFj755JN2x7/++mujPS9N/dlb8ucwceJE/Pz8WLZsGcuWLUOpVLZb3ge5VZqzszNvvfUWDQ0NHa5RW1tLU1MTgNH84NDQUPz9/Q0fDOrr6zv0wnVwcDB0YNCfd9VVVwHw73//2+gKQlfL+6aOxRQffvhhu3+vW7eOnJycdjnbV199NTqdjn//+99Gr9HdWPuKPkf2hx9+aHf8+++/p6KioldN9t3d3cVSvWAXxAyqIPSAv78/d955Z6fFUrfccgt//OMfue2225g7dy41NTX88MMPhIeHU1paarVxqVQq/vjHP3LdddcRHR3Nrl27WLt2LaNGjWLWrFmG8x577DH279/PokWLmDlzJqmpqTg5OVFYWMiWLVtITk5m8eLFPR7H+PHjmTlzJqtWraK6uprJkycb2ie5uLjw7LPP9vjaHh4ezJs3jx9++IHHH3+cUaNGcfr0aUO/R2M9QXtj/vz5fP/997zzzjvk5+eTlpbGsWPH+OWXXxgwYECHoMucn72lfg5OTk7MmTOHL7/8ksOHDzNu3DhCQkLanRMaGsrf//53nn32WWbNmsVVV11FREQEFRUVnDhxgvXr17Nq1SoiIyN577332LZtG5MmTSIyMhJJkti0aRPZ2dmG9lG5ubksWLCA6dOnk5CQgLe3N9nZ2XzzzTdERkYainuGDh3Kww8/zFtvvcXVV1/NjBkzCAkJoaSkhCNHjrBlyxYOHz7c6fdmyli64+fnx7p16ygpKTG8Xr7++msCAwN56KGHDOddccUVzJ8/ny+//JIjR44wefJk/Pz8KCoqIj09ndOnT7crqrKVu+66i19++YV//OMfHD16lKSkJI4dO8aPP/5IbGysyc+LMWlpaezYsYMPP/yQ8PBwFAoFs2fPtuDoBcE0IkAVhB664447+Prrr40GnFdddRUlJSV89dVXvPjii0RFRfHAAw+gVCrJyMiw2piSk5N55plneP311/n222/x9PRkwYIFPPbYY+1y0Ly8vPjmm2/45JNP+OWXX9iwYQMODg6EhoYyYsQIrrvuul6P5dVXX2Xw4MEsXbqUxYsX4+7uziWXXMKjjz7a6z6nzzzzDJIksX79ejZs2EBycjLvvfce33//vcUDVGdnZz755BNefvllNmzYwK+//sqQIUMMx84vMjHnZ2/Jn8PVV1/NF198QV1dXYfZU71rrrmGmJgYPvnkE7777jtqa2vx9fUlNjaWRx991LAEPm3aNEpLS/nll18oKyvD1dWV6Ohonn/+ea699lpADnivueYadu3axfr162lqaiIkJITrrruOu+++u11u5kMPPURKSgpffPEFn3/+OXV1dQQEBJCQkMBf/vKXLr8vU8bSHXd3dz777DNeeOEFXnvtNSRJYsKECTz99NMd8nFffPFFRo8ezffff88HH3xAc3MzQUFBDB48uEPahK3oXzdvvvkmGzdu5OeffyYgIIAbb7yRhx9+uFfdJf72t7/xj3/8g/fff9/QfF8EqIItKCSR1SwIgtAjCxcupKCggI0bN9p6KEInxM9IEPonkYMqCIIgCIIg2BURoAqCIAiCIAh2RQSogiAIgiAIgl0ROaiCIAiCIAiCXbmoqvh1Oh0ajQYnJ6cud6MRBEEQBEEQrEs/R+ri4tIhLruoAlSNRsOJEydsPQxBEARBEAShVUpKCi4uLu2OXVQBqpOTEyA3M3d2drbxaDp3+PBhUlJSbD2MfkE8V+YTz5npxHNlPvGcmUc8X+YRz5d57P35ampq6nTi8KIKUPXTx87Ozh0idXtj7+OzJ+K5Mp94zkwnnivziefMPOL5Mo94vszTX58vUcUvCIIgCIIg2BURoAqCIAiCIAh2RQSogiAIgiAIgl0RAaogCIIgCIJgV0SAKgiCIAiCINiVi6qKXxAEQRDsTVZWFk1NTbYeRr/g6OjIsWPHbD2MfsNWz5ezszOBgYH4+Pj0+Bo2C1APHjzI0qVL2bVrF4WFhfj6+jJs2DAWLVpEdHS04byFCxeye/fuDvefNWsWr7/+el8OWRAEQRAspqGhAWdnZ8LCwnBzcxM7HJpAo9Hg4eFh62H0G7Z4viRJor6+nvz8fFxcXHB1de3RdWwWoH700Ufs37+fK664gsTEREpLS/nqq6+4+uqr+fHHH4mPjzecGx4ezqJFi9rdPyIioo9HLAiCIAiWU1paSmBgIO7u7rYeiiBYjEKhwN3dncDAQEpLS4mKiurRdWwWoN5+++28+uqr7XZ0mjVrFldeeSVLlixh8eLFhuPe3t7MnTvXFsMUBEEQBKtoaGggODjY1sMQBKvw8vKivLy8x/e3WZHU8OHDO2w3GhMTQ0JCAllZWR3O12q1aDSavhqeIAiCIFiVVqvFwcHB1sMQBKtwdHREq9X2+P52VcUvSRJlZWX4+fm1O56VlUVaWhrDhw/n0ksv5f3330en09lolIIgCIJgGSLvVLhQ9fa1bVdV/MuXL6e4uJjHHnvMcCwqKorRo0eTmJiIWq1m5cqVvP766xQWFvKPf/zDhqMVbG77WwQUV8OIEbYeiSAIgiAIFqSQJEmy9SBAniW9/vrrSUxM5Msvv0Sp7Hxy99FHH2Xt2rWsXr2auLg4kx+jsbGRw4cPW2K4gh1I3rAAgCNTv7TxSARBEMzn6OjIwIEDbT0MQbCaU6dOmbTMn5KSgouLS/uDkh0oKSmRpk6dKk2ePFkqKSnp9vz09HRJpVJJX3/9tVmP09DQIO3du1dqaGjo6VD7xN69e209hP7hX+GS9DdvSao8beuR9Cvi9WU68VyZTzxnpjt69KikVqttPQyrWbJkiaRSqaRbb73V6O15eXmSSqWSPv30U5OvqX++FixYIF111VUm32/16tWSSqWSpk2b1uk5KpXK8F9SUpI0atQo6dprr5Vefvll6cyZMx3O37lzp6RSqaR169YZvd79998vTZ48ud2xyZMnS/fff3+Hc8vKyqR//etf0rRp06SUlBRp9OjR0r333ivt3r27y8fVarXSvHnzpIkTJ0oajabDuUePHpVSUlKkp556qt3xWbNmSSqVSlq6dKnRsb/55puSSqWSqqurjd4+YsSIDtc05ujRo13e3lVcZvMc1NraWu6++25qa2v56KOPCAoK6vY+oaGhAFRXV1t7eIK9alRDk1r+/+zNth2LIAiC0MGKFSuIiIhg9+7dlJSU2MVYzpw5Q0ZGRqfnXXrppbz88su88MILPPjgg8TFxfHVV18xe/Zsli1bZpWxZWVlMXfuXL799lsmTJjAX//6V+644w5yc3NZsGABn3/+eaf3dXBw4LnnnqO4uJi33nqrw+2LFy/G3d2dP/3pT4Zjx44d49SpU0RERLBy5UqrfE+WYNMAtbGxkfvuu4/c3Fw++OADk5fr8/LyAPD397fm8AR7pmnzZpcjAlRBEAR7curUKY4fP85f//pX3NzcWL16tc3GUl1dzZYtW3jggQeIiYlhxYoVnZ4bFxfH3Llzufrqq7n11lt56aWXWLNmDREREfzlL3+x+K5Mzc3NPPLII2g0Gr7++mv++te/ct1113HvvfeybNkyRo8ezYsvvsj+/fs7vcaQIUO45ZZb+Pzzzzl+/Ljh+OrVq9m5cydPPfVUu3hpxYoVhIeH8+ijj7Jjxw4qKios+j1Zis0C1JaWFhYtWkR6ejpvvPEGaWlpHc5Rq9Udtn9raWnhgw8+QKlUMnbs2D4arWB31KUANDv7Qs4WsI9UakEQBAE5CAoMDGTChAlMnTqV5cuX22wsa9euBWD69OnMnDmTNWvW0NLSYvL9w8LCWLx4Mc3NzXz00UcWH9upU6e45557SElJaXebi4sLL7zwAgqFgnfffbfL6yxatIiAgAD+/ve/I0kSarWaF198kZEjRzJ//nzDeZIksWrVKq644gqmTZuGo6OjTT88dMVmVfyLFy9m48aNTJ48maqqqnZT5x4eHkybNo0jR47wxBNPMGfOHAYMGEBdXR1r1qzh8OHD3H333T3enUC4AKiLAagMn0Rw7v+g9DgEJ9l2TIIgCAIAK1euZMaMGTg4ODB79mzuvfdecnJyiI2N7fOxrFixgvHjx+Pj48Ps2bN577332LFjB5deeqnJ10hNTSU6Oprt27d3uE2tVhudhWxubu72ups2bQLodDOiyMhIRowYwc6dO2lsbOxYSNTK09OTZ599locffpjvv/+eU6dOUVlZyfvvv9/uvD179lBUVMSsWbPw8PBg4sSJrFy5kgULFhi9bnV1tdEiJ6kPJoVsFqDqp6E3bdpk+AHpRUREMG3aNMLDwxk+fDi//vorZWVlKJVKEhISWLx4MfPmzbPFsAV70brEXxE5TQ5QszeLAFUQBMEO7N+/n/z8fGbNmgVgCA5XrFjBI4880qdjKS4uZu/evbz44osAJCQkkJCQwIoVK8wKUAEGDhzIhg0bUKvVeHp6Go4/9dRTnd6nu23Zs7Ky8PLyIjw8vNNzEhMT2b17N7m5uSQmJnZ63uWXX87kyZN55ZVXqKur47777iMmJqbdOStWrCAqKoohQ4YA8g6ejz76KHl5eUYn/aZNm9bl+K3JZgHqF1980e05UVFRvPnmm30wGqHfUZcACjQ+ieAXI+ehjrnP1qMSBEHolZ/25fP93jxbD4PrR0ZxzYjIHt135cqVhISEMKK1R7WTkxPTp09n5cqVfR6grly5Eicnp3aB1qxZs/joo4947rnncHV1Nfla7u7uAGg0mnYB6sMPP8zw4cM7nP/mm292Wxym0Wjw8PDo8hz97abspvnXv/6VmTNnEh4ezn333dduFrepqYm1a9dy4403Go5NmjQJDw8PVq5cyf3339/heu+8847h+27rwQcf7HYsvWVXjfoFwWTqEnAPAKUDxE6EI0uhRQsO4iUtCIJgK1qtljVr1jB+/HjOnDljOJ6WlsaPP/7IwYMHGTp0aJ+NZ8WKFaSmplJeXm7YFz4lJQWNRsPGjRsNs7ymqKurA+gQUA4aNIhx48Z1OP/LL7/sNkD18PCgsrKyy3P0gWlAQEC3YwwPDycgIACVSoWzs3O7AHXLli1UV1czZMgQTp8+bTg+YsSITgPUUaNG4e3t3eF4X2zRK/6aC/2TugQ8Q+T/j5sI+z+Ds+kQOdKmwxIEQeiNa0ZE9njm0h5s27aNiooKVqxYYbRafsWKFX0WoGZlZRmq7i+//PIOt69cudKsAPXkyZP4+/u3mz3trfj4eI4dO0ZhYWGny/yZmZk4OTkREhLSq8fSt5R66KGHjN5+7NgxkpLsJ1VOBKhC/6QpAc9g+f9jJ8pfs38TAaogCIINrVixgtDQUJ555pkOty1btow1a9bw9NNP98kM3PLly3FxceGll17qsC/81q1b+d///kd1dTU+Pj7dXisjI4MzZ85w5ZVXWnSMkyZNYuXKlSxfvpz77uuYplZYWMi+ffuYOnWqWekI51Or1WzatImrrrqKqVOndrj9L3/5C8uXLxcBqiD0mroYBrT2zfUIhJAUud3UZU/adlyCIAgXqfr6ejZs2MDcuXO54oorOtzu6urKxo0b2blzJ+PHj7f6eFatWsXo0aOZOXNmh9vi4+P54YcfWLt2Lddff32X1ykqKuLpp5/GycmJu+66y6JjnDFjBu+99x4ffvghEydObBcgNjU18ec//xmFQtHrx12/fj0NDQ0sXLjQ6Az26tWrWb16NX/60586BPO2IgJUof+RJLkPqn4GFeRZ1L0fQ3MDOPX8U6YgCILQMxs2bKCuro7JkycbvX3MmDG4uroa2j7pbd++3ZDf2dbs2bOJjo7u9PHKy8uN9geNj48nODiYvLw87rjjDqP3TUhIIDIykhUrVrQLULOzs1m2bBmSJFFbW8uRI0f45ZdfkCSJxYsXM2jQoE7H0xPOzs68+eab3H777dx4441ce+21DBo0iMrKSpYuXcrp06d59tlnSU1N7dXj6PvS6qv3zzd58mTWrl3L7t27GT16dK8ey1JEgCr0P421oK0HjzYBatxE2PkO5O2S/18QBEHoUytXrsTNzY0xY8YYvd3V1ZWxY8eybt06nnvuOcPxzZs3s3lzxx0Bk5KSugxQS0tLeeONNzocnzFjhmHb9M6CZf1tX331FUVFRYYt1Ldu3crWrVtxcHDA09OTAQMGcMstt3DjjTdarff6wIEDWbZsGe+//z6bNm3iu+++MxQ3ffzxx2a3wzpfeXk5O3bsYO7cuZ3Ojk6cOBGlUsnKlSvtJkBVSH3RbdVONDY2cvjwYVJSUjptdmsP9u3bZ2jPIRhRdgreHgHzPmSfdqD8XDXUwEsxcOkimPpXW4/QronXl+nEc2U+8ZyZ7tixYwwYMKDbNkPCOaa0ZboQ7Nu3jzvuuIPU1FQ+/vhjnJ2de3QdWz9f3RVedRWX2WyrU0HosdYm/XgGnTvm6g0RI+SG/YIgCILQj40YMYJXXnmFvXv38swzz/TJzk32RizxC/1P6zaneIZAVcO543ET4ffXoKEaXLuvyhQEQRAEezVjxgxDm6yLkZhBFfofdan8tW0OKsiFUpIOcrf1/ZgEQRAEQbAYEaAK/Y+6GBQO4O7f/njUKHB0k7c9FQRBEASh3xIBqtD/aErk3qfK8xo9O7rAgDEiD1UQBEEQ+jkRoAr9j7qkfQ/UtuImQukxqC3u2zEJgiAIgmAxIkAV+h91iVwgZYx+29OcLX03HkEQBEEQLEoEqEL/oy7pWCClF5YqV/Dn/NanQxIEQRAEwXJEgCr0L5Ik56B2tsSvdICYCWIGVRAEQRD6MRGgCv1LQxW0NHUeoALETYKqM1CR01ejEgRBEATBgkSAKvQvav0uUp3koEKbPFRRzS8IgiAI/ZEIUIX+RR+gegR1fk5gAniFiXZTgiAIgtBPia1Ohf6l7TannVEo5FnUU+tBpwOl+BwmCIJgbYmJiSadt2HDBiIjIwF47rnn+Prrr7nmmmt44YUXOpy7a9cubr31VsO/lUolAQEBjB07lscff5ywsDCefvppli5d2u3jPvTQQ8ybN4+pU6fyzDPPcPvtt3c456233uLtt99mz549eHt7A9DU1MQ333zD0qVLOXPmDEqlkpCQEIYPH87tt99OfHy8Sd+3YB4RoAr9i6Z1m9OuclBB7od68FsoOQqhKdYflyAIwkXu5Zdfbvfvzz77jMLCQp555pl2x/395V0AtVota9asISIignXr1vH3v/8dZ2dno9e+7bbbSE5ORq1Wk5mZyU8//cT+/ftZtWoVN9xwA2PHjjWce+TIET777DPuu+8+4uLiDMdNDaDP98gjj7BlyxZmz57Nddddh1arJTs7m99++41hw4aJANVKRIAq9C/qYlA6gatv1+fFXiZ/zdksAlRBEIQ+MHfu3Hb/Xrt2LVVVVR2O623bto3KykrefPNNbr31VjZv3sz06dONnjtq1CimTZuGRqPBw8MDHx8fPvzwQzZu3MisWbMYNmyY4VwPDw8+++wzxo0bx+jRo9tdJz8/36zv6eDBg2zatIknnniCe+65p91tLS0t1NTUmHU9wXRi7VPoX9Slcv5pd8v2PpHgHy/yUAVBEOzU8uXLSUlJYdSoUQwfPpwVK1aYfN8RI0YAkJeXZ63htbu+/vHacnBwwM/Pz6qPfzETAarQv6iLu1/e14ubCKe3QUuzdcckCIIgmKWurs4w+wkwe/ZsfvvtN9RqtUn3LygoADDkiVpLeHg4ACtWrECr1Vr1sYT2RIAq9C+aLrY5PV/sRGhSQ8F+645JEARBMMuGDRuor69n5syZAMyYMQOtVsvatWuNnq9Wq6moqKCkpIT169fz7rvv4uzszOTJk606zrS0NEaNGsU333zDpEmTeOKJJ/j66685e/asVR9XEDmoQn+jLoHQIaadG3sZoJDzUAeM7vZ0QRAEm0v/Bg58aetRwLAFkHaT1S6/cuVK0tLSDDOUgYGBjBo1ipUrV3LNNdd0OP+pp55q9++IiAjeffddQkNDrTZGAIVCwccff8zHH3/M8uXLWblyJStXruS5555jzpw5PPfcc3h6elp1DBcrEaAK/YdOJ1fxmzqD6u4vB7PZm2Hin6w7NkEQBMEklZWVbNu2jdtvv53Tp08bjo8cOZJ33nmH0tJSgoLa97p++OGHGT58OOXl5axbt47ff/+904p/S1AoFIb/d3Z25v777+f++++npKSEPXv28Pnnn7Ny5UocHBw6dC8QLEMEqEL/UV8JOi14mJiDCnIe6q4PoKkOnN2tNzZBEARLSLvJqjOX9mDNmjU0NzezZMkSlixZ0uH2VatWdehROmjQIMaNG4dGo2HOnDncfvvtPPnkk/zyyy94eHiY/NguLi4ANDY2Gr29vr6+3XnnCw4OZvbs2Vx++eXMmTOH1atX88ILL+DoKMIpSxPPqNB/GJr0mxGgxk6C7W9B3k6In2KNUQmCIAhmWLFiBYMHD+bee+/tcNt///tfVqxYYbSJvp5CoeCxxx7jhhtu4KuvvurQ/qkrfn5+uLq6kpOTY/T2nJwcAgMDu52ddXJyIjExkdzcXCorKzvM+Aq9JwJUof/QtG5zak6AGj1W7puavVkEqIIgCDZWUFDAgQMHeOKJJ7jiiis63F5eXs4//vEPcnNziYmJ6fQ6aWlpjBgxgs8++4zbbrut0xnP8zk6OjJu3DjWr19PUVFRuxzW3Nxctm3bxuzZs9sdc3Z2NuTK6tXU1HDgwAF8fHwMGw8IliWq+IX+Q60PUE3MQQVw9oDIS+RCKUEQBMGmVq5ciSRJnVbfT5o0CcCknqh/+MMfKCsr4+effzZrDI8//jgtLS3MmzeP119/ne+++45XXnmFa6+9Fnd3dx566CHDucePH+fyyy/n/vvv5+OPP+bHH3/knXfe4ZprrqGkpIQHH3wQBwcHsx5fMI2YQRX6D32A6mHmUkrcRPhtsZzD6iaaKguCINjKypUriYqKYuDAgUZvj4iIQKVSsXLlSh5++OEurzVlyhSio6P55JNPuP76600OFBMSEvjhhx94++23+f7776mpqcHPz4/JkyfzyCOPEBERYTj3kksu4ZFHHuH333/n008/pbKyEg8PD5KSknjyySeZMWOG6d+8YBYRoAr9h7oYHFzA1ce8+8VOhN9ehNytkHSldcYmCIIgtPPuu+92OGbKzGjbc0aPHk1mZqbR85RKJb/++muH49OmTev0PnoDBw7kP//5T7djCQgI4J577jErz1WwDLHEL/Qf+hZTbdp/mCRiBDh5iG1PBUEQBKGfEAGq0H+oi8GzB5WSjs4QPU7koQqCIAhCPyECVKH/UJvRpP98cROh7ATUFFp2TIIgCIIgWJwIUIX+Q11sfoGUXuxE+WvOFsuNRxAEQRAEqxABqtA/6FqgrqznM6ghKeDmL/JQBUEQBKEfEAGq0D/UlYOkM69Jf1tKJcROkPNQJcmyYxMEQRAEwaJEgCr0Dz3Z5vR8sROhpgDKsywzJkEQBEEQrEIEqEL/YGjSfy5AzSyqpUSjNf0acZPkr6KaXxAEOyGJFR3hAtXb17YIUIX+wbDNqRygbj5RypVvb+XD/TWmX8M/DrzCIG+3FQYoCIJgHicnJxobG209DEGwivr6epycnHp8fxGgCv2D5lyAuimzhLs/30uTVkdulRkzqAoFBAyEylyrDFEQBMEcwcHBFBYWUldXJ2ZShQuGJEnU1dVRUFBAcHDP0/LEVqdC/6AuASd3NmRpuP+rA6hCPZmoCuKdTVlUaprw83A27Tq+0XBqvXXHKgiCYAJvb2+ampooLCykubnZ1sPpF5qamnB2NvH9XrDZ8+Xk5ERISAje3t49voYIUIX+QV1CnXMA9321n6Qwb774w2jS86t4Z1MWx4tqGRsfYNp1/GJAXQTN9eDkZtUhC4IgmGLgwIG2HkK/sW/fPlJTU209jH6jPz9fYolf6BfKi/M4XuvK4HAfvrhzND7uTgwK9QLgRHGt6Rfyi5a/Vp2xwigFQRAEQbAEEaAKdm/NobOUFeXT5BbEF3eOwsdNTroO9nLB01nB8SJzAtQY+WvlacsPVBAEQRAEixABqmDXVh08y0PfHCDUoZrhg1V4u56rCFQoFAzwdiSzyIxKft/WGVRRKCUIgiAIdstmOagHDx5k6dKl7Nq1i8LCQnx9fRk2bBiLFi0iOjq63bn79+/nlVde4ejRo3h6ejJz5kyeeOIJ3NxEDuGFbEVGIYu+S+eSKE98imvAJ6zDOQN8nNiar0aSJBQKRfcX9QwGRzeoEjOogiAIgmCvbDaD+tFHH7Fu3TrGjRvHX/7yF66//np2797N1VdfTVbWuZ1+jh07xu23305jYyNPP/001157Ld999x2PPfaYrYYu9IFl6QU8+u0BRkT78cl1sfJBj6AO5w3wcUTdqKWgqt60CysUch6qmEEVBEEQBLtlsxnU22+/nVdffbVd+4NZs2Zx5ZVXsmTJEhYvXgzAv//9b3x9ffniiy/w8PAAIDIykmeffZYdO3YwduxYm4xfsJ6lB/J54vsMRsX688ntl+Bedli+wTOkw7nRPvJL+ERxLZF+7qY9gG+0yEEVBEEQBDtmsxnU4cOHd+jNFRMTQ0JCgmEGVa1Ws337dq6++mpDcAowd+5c3N3dWbNmTZ+OWbC+H/fl8/j3GYyJC+DT20fh7uwImlL5Rs+ODX+jWgNUswulKnNBNMYWBEEQBLtkV0VSkiRRVlaGn58fAJmZmWi1WlJSUtqd5+zsTFJSEseOHbPFMAUT6HQSLWb+9/2ePP74Ywbj4wP5+LZLcHN2kC+mLpa/GglQPZyUhPu4kmlWgBoNTbVQX2mB71QQBEEQBEuzq0b9y5cvp7i42JBfWloqz5wFBXXMPQwKCiI9Pb0vhyeYKLtUzew3t1Lf3GL2fSckBLLk1pG4OjmcO6hu3ebUw/iWaYmhXmYGqDHy18occPc3e4yCIAiCIFiX3QSoWVlZ/OMf/2DEiBHMnTsXgIaGBgCj23S5uLgYbjfX4cOHez7QPrJv3z5bD6HHVpzQUN/cwrVJHjgqTaisb+XhpGBanANHDqa3Ox6ZfYhAR3fSDxmfMfehjt+LNezas9ekx3Or0TAYyN7/G5VFJg/vgtKfX199TTxX5hPPmXnE82Ue8XyZp78+X3YRoJaWlnLvvffi4+PDG2+8gVIpZx64uroC8l6y52tsbDTcbq6UlBRcXFx6PmAr27dvHyNGjLD1MHrsvcN7iA3U8eptkyxzwRwFeIcZfU727dvHxLSB/C8zA78BiahCvLq/XqMKNkOcnxL68fPcU/399dWXxHNlPvGcmUc8X+YRz5d57P35amxs7HTS0OY5qLW1tdx9993U1tby0UcftVvO1/+/fqm/rdLSUoKDjS/5CrbTopPYlVPBmDgLLp2rS4zmn+olhngDmL7M7+IF7gGi1ZQgCIIg2CmbBqiNjY3cd9995Obm8sEHHxAXF9fudpVKhaOjY4fouqmpiWPHjpGUlNSXwxVMcLSwhtoGLWPiAix30W4C1PhgDxyUCvPzUEWrKUEQBEGwSzYLUFtaWli0aBHp6em88cYbpKWldTjHy8uLsWPHsmzZMjQajeH4smXLqKur44orrujDEQum2JFdBsBYiwaoxZ0WSAG4ODoQG+hBZrEZAaqvaNYvCIIgCPbKZjmoixcvZuPGjUyePJmqqiqWLVtmuM3Dw4Np06YB8Nhjj3HjjTeycOFCrrvuOoqKivj000+57LLLGDdunK2GL3RiR1Y58UEeBHv3LD+4A20jNFQZbdLfVmKoF4fyq02/rl8MHFsOuhZQOnR7uiAIgiAIfcdmAerx48cB2LRpE5s2bWp3W0REhCFATU5O5tNPP+XVV1/lxRdfxNPTk+uvv57HH3+8z8csdE3bomNPbiVz08Itd1FDk/6OrcbaSgzxYtXBs2gatXi4mPCy9osGnRZqCsB3gAUGKgiCIAiCpdgsQP3iiy9MPnfkyJF8++23VhyNYAmHCqpRN2oZG2/h5X0waQYV4GSJmrQo3+6va+iFeloEqIIgCIJgZ2xexS9cOHZmVwBYuECqdQa1ixxUkGdQATKLaky7rm+0/FXkoQqCIAiC3REBqmAxO7LLUYV4EuhpwR6zXWxz2tYAf3fcnBzILFKbdl2fSFAooUpU8guCIAiCvREBqmARzS069uZWWLZ6H0DTus1pNwGqUqlAFeJJZrGJM6gOTnKQKmZQBUEQBMHuiABVsIiD+VXUNbVYdnkf5B6orj7g2P2srCrEy7xeqL7RoheqIAiCINghEaAKFqHPPx1tjQC1mwIpvcRQL8rUTZSpG027tl+MmEEVBEEQBDskAlTBInZklTMo1At/D2fLXlhd0m2BlN6gUHnL0xOmzqL6RcspBE11PR2dIAiCIAhWIAJUodcatS3sPV1h2fZSepqutzltSxXqCcBxkwPUWPlr1ZmejEwQBEEQBCsRAarQaxl51TQ06yyffwqtS/ymBahBni74ezhzwtQtT0WrKUEQBEGwSyJAFXptZ3Y5CgWMibVwgNpcD401JgeoCoVcyW/6DGqM/FW0mhIEQRAEuyICVKHXdmSVMzjMGx93J8teWN3aYsrEHFSQ81BPFtei00ndn+wRCE7uYgZVEARBEOyMCFCFXmlobmHfmUrL9z+FcwGqiVX8IFfya5paKKiq7/5khaK1kl/MoAqCIAiCPREBqtArB85U0aS1Uv6poUl/kMl3UbVueWryMr9vtJhBFQRBEAQ7IwJUoVd2ZJejVMCoOH/LX9ywzanpM6iqELmS3+RCKb9oOQdVMiElQBAEQRCEPiECVKFXdmaXkxLhg7erhfNPAdSl8lcP02dQvVydiPB1M69QqkkNdeXmj08QBEEQBKsQAarQYw3NLaSfqbJO/inIM6hu/uBgXvA7KNSLzKIa0042tJoSeaiCIAiCYC9EgCr02L7TlTS16BhjjQb90Nqk3/Tlfb3EUC+ySzU0aXXdn6xvNVWZY/bj9EfHztbQItIZBEEQBDsnAlShx3ZkleOgVHBJjBXyT6G1Sb/py/t6iaFeaHUS2WXq7k/2HSB/vQh6oeZV1DHrzd/5/XSDrYciCIIgCF0SAarQYzuzyxkS4YOni6N1HkDd8xlUgExT8lBdPOUc14ugkv9kSS2SBFmVzbYeiiAIgiB0SQSoQo/UNWnJyK9irLWW90EOUM1o0q8XF+iJo1JhWoAKra2mLvwZ1OxSDQBnqrU2HokgCIIgdE0EqEKP7M2tpLlFsl6BVKMamjUmb3PalrOjkrggD9MDVL+Yi2KJP7tMH6A2I4k8VEEQBMGOiQBV6JEd2eU4KhWMiPazzgMYmvSbH6ACJIZ6k2lWL9Q8aLmwZxZzWmdQa5okytRNNh6NIAiCIHROBKhCj+zIKic1yhcPa+afQs8D1BBP8ivrUTeaEHT6xYDUAjUFPXqs/iKnTEO4jytgYn6uIAiCINhIl9HFkSNHzL5gcnJyjwcj9A/qRi2HCqq5f2K8FR+kNUDtQQ4qyDOoIAdi3c7yGnqh5sqzqRcgTaOWopoG7hgfw6fbcjleVMOlCYG2HpYgCIIgGNVlgHrNNdegUCjMuuCxY8d6NSDB/u3JraBFJ1m5QMr8bU7bGtRayX+i2IQAVd8L9QLOQ81pzT8dFePPT3vPmL4VrCAIgiDYQJcB6oMPPmh2gCpc+HZmlePkoGD4ACvlnwJoSkGhBI+ezfJF+Lrh7uxg2lK2dwQoHC7oVlP6ADU2yINoH0exxC8IgiDYtS4D1IcffrivxiH0IzuyyxkW5Yebs4P1HkRdDO4BoOzZYyiVClQhXqYFYg6O4BN5Qbea0geoMQEeDPBxZGOuGp1OQqkUH0AFQRAE+yOKpASz1DQ0c7ig2nrbm+qpS3u8vK+XGOJFZnGtaS2V/GIu+BnUCF83XJ0cGODtSH1zC3mVdbYeliAIgiAY1eMS7AMHDvDzzz9TXFzMwIEDuf322wkO7llBi9B/7MmpQCdhvf6neupieYenXkgM9eK7vXmUqhsJ9nLt+mS/aMhc06vHs2fZpWrigjwAGOAj/9ofL6olOsDDlsMSBEEQBKO6nEFdsmQJo0aNory8vN3xFStWsGDBAn744Qe2bNnCJ598wnXXXdfhPOECsfJxWPEoILeXcnZUMmyAr3Ufs4fbnLZlKJQqUnd/sl+MnPfaaMK5/YwkSWSXaYgNlIPRqNYA9YTIQ7ULv2WWMPftrTQ0t9h6KIIgCHajywB1165dpKSkEBBwbrZMq9WyePFilEol//znP1m+fDkPP/wwJSUlfPzxx1YfsNDHCg/A3o/hwJdQV8GO7HKGD/DF1cmK+aeSJDfq9+zdDKqqNUA9XlTT/cn6VlNVZ3r1mPaoXNNEbYPWEKC6OSqJ8nfjuKjktwsbjpWQkV/N/tOVth6KIAiC3egyQM3KymLIkCHtju3Zs4fy8nJuuOEGrrvuOlQqFQ8++CBTpkzh999/t+pgBRvY+Dw4uoJOS93B/3H0bA1j46zcP7OxBrQNvZ5BDfR0IdDT2bRCKb9Y+esFmIdqqOAPPLecnxjiLWZQ7YR+x7Md2WIFShAEQa/LALWiooLIyMh2x/bv349CoWDq1Kntjo8aNYr8/HzLj1CwndPb4dR6mPQM+MVSd+AnJAnr9j8FuUAKetykvy1ViJdpPT/1DfovwF6o+i1O4wI9DccSQz3JLtPQqBXLyrYkSZLhA9SOLBGgCoIg6HUZoLq5uVFX177S99ChQygUCoYOHdruuJeXFy0t4o/dBUOSYMM/5FnMUfdA8jz8i3cQ5qQmNcrHuo9taNLf+wA1MdSLE8VyS6UuuQeAs+cFOYOaVabG2UFJhJ+b4VhiqDctOomsEo0NRyYU1zRSXd+Mn7sTGflV1DWZsDWvIAjCRaDLADUyMpIdO3YY/t3Y2Mi+fftQqVR4eLSv/i0rK2uXqyr0c6c2wJkdcNkfwdkdUuajpIU7A47g4mjF/FOQ80+h10v8IBdKmdRSSaGQ81AvwF6oOaUaogPccWjT87TtTluC7eiX928cNYDmFol9Ig9VEAQB6CZAnTt3Lps3b+all15i8+bN/PnPf0atVjNz5swO5+7fv58BAwZYbaBCH9LpYMNz4DsAht8GQIWniixdGDPY0c2dLUCtD1Ats8QPckulbvnFXJhL/G0q+PViAz1wclCY9rwIVpPZWsB3y+gBOCgVYplfEAShVZcB6g033EBqaiqffvop9913H6tWrSIpKYlbb7213XmlpaVs3bqVcePGWXWwQh85thyKDsKkP4OjMwC7cytYpRtNZPXecwGktahL5K1H3fx7fSl9gGpaoVS0vMRvSmP/fqJFJ3G6vI7YoPYBqpODkvggT0OAJNhGZpGaYC8XIv3cGRrpIwqlBEEQWnXZqN/Z2ZmvvvqKDRs2kJuby4ABA5g6dSpOTk7tzisvL+fxxx/niiuusOpghT6ga4FN/4LARBh6veHwjqxyDijG84j0PzmAveQu641B36Rf2fuNzjxcHBng725YSu2SXww014GmrNctruxFQWU9TS064tsUSOmpQrzEkrKNZRbXkNiabjE2LoAPtmSjadTi4dLjPVQEQRAuCN2+Czo4OHD55Zd3ec6gQYMYNGiQxQYl2NDB76DsBFz/BSjP5ZruyC4nJHooNCTC4aXWDVA1pRZZ3tdThXiZNoOq74VamXvBBKjZZfLGA+fPoIJcQLY8o5Cahma8XZ063C5YV4tO4mSxmoVj5Nfd2PgA3v0tiz25FUxKFLvyCYJwcev9FJVw4dA2wqYXISwNkq40HC5TN3KiWM3YgYGQPA9Ob4PaIuuNQ11s0QB1UKgXOaa0VLoAW00Z64Gqpy+UOikKpWzidLmGRq3OMIM6ItoPJweFWOYXBEGgmxnUZ555xqyLKRQKXnjhhV4NSLCh/Z9D9Rm48nW5qr3VruwKQF6CxHUebF4MR5fD6HusMw51CQQPttjlVKFehpZKg8O9Oz/RMIOaY7HHtrWcMg1ero4EeDh3uK1tAdmI6N7n+wrm0c/q6wNUd2dHUiN92SkKpQRBELoOUJcuXYpCoUAysWhEBKh9r7ahmc93nOaey+JwcujFhHiTBja/DNHjIb79Jgw7ssvwdHFkSIQPOPjJweORn60ToEqSHKB6WG6JXT9TmFlc03WA6uwubw5wAbWayi7VEBfogaLNBw69SD83PF0cTUt/sDdZm+DoMvPvlzQHBk6z/Hh6ILO4FoUCEoK9DMfGxgfwzqZT1DY04yXSLgRBuIh1m4Pq4uLC9OnTmT9/vsgztUO/HC7ilbWZDI30YUJCL4K63R/K/Uev/7zd7CnA3txKhkf74agPgJPnyYVUNYXgHd6L0RtRXwm6Zov0QNXTt1TKLFJ3f7JfzAXVrD+nTMOoWOOzowqFAlWIZ/8MUDe/BAX7wNXX9Ps0VMv3sZcAtaiWaH933JzP5XqPjQvgrY2n2JNbwZRBlvsdEARB6G+6nUH96aefWLFiBStXriQpKYlrr72WK6+8Ei8vr67uKvQRfY7hsbM1PQ9QG6ph638g4XKIHtvupromLSeKa7l8cJs/lvoA9egyGHN/D0feCU3rNqcWzEE1q6WSXzTk7bLYY9tSQ3MLBVX1RvNP9RJDvVhzuAhJkozOstqt8lNyl4m575h+n/V/h+1vQ3MDOLlabWimyiyqNSzv6w2P9sPZQcmOrHIRoAqCcFHrck04KSmJZ599lt9//53XXnsNPz8/nn/+eS699FKeeOIJtm/f3lfjFDqhD1CPFPain+X2t6GhCqY82+GmI4U16CRIjfI9dzAwAUKGwOGfe/6YnbHgNqdtJYaaWMnvFwPV+dDSbNHHt4Xc8s4LpPQSQ7yoqmumpLaxr4bVew018gcZ/3jz7hc+TJ6dLzlinXGZoaG5hdxyDYmh7VNOXJ0cSBvgKwqlBEG46JmUtOjs7MysWbP4+OOP2bhxI/fddx+HDx/mzjvvZMqUKWzatMna4xQ6kV0qByFHexqgqkthxzsw+GoIS+1wc0ZeFQBDI33b35B8NeTvhqq8nj1up+Ox3DanbalCvCisbqCmoZvA0zcaJJ0cpPZz+tdGVwGqKtSMjQzsRUWW/DWgBwEqQOEBy46nB06VqNFJ8geE842NC+BIYQ3V9f3/Q5IgCEJPmV1VExoayv3338+nn37KuHHjKCws5MgR289IXIx0Oomccg2OSgVZpWrqm7ppo2TM1tdBWw+T/2L05oz8aiJ83Qjycml/Q/I8+WtPClW6og9QLVgkBW32nu8uEPOLkb9eAHmoXbWY0hvUOoPXrwLU8tYA1dwZVJ8ocA+AwnSLD8lc51fwtzU2PgBJgt05FX09LEEQBLthVoDa1NTEqlWruPPOO5k+fTp79+5l9uzZ3TbyF6yjsLqeJq2O8QMD0UmYtltSW9X5sOcjSL0ZglRGT8nIq2JopE/HGwLi5RnXIxZe5teUgNIJ3PwsetlEQyV/dwHqhdMLNbtUQ6i3a5e7Evl7OBPk5WL+a8eWKrLlr/5x5t1PoZB7/NpDgFpci7OjkpgA9w63pUX54uIo56EKgiBcrEzaT+/QoUP8/PPPrF69murqalJSUvjLX/4iiqVsTD9DNntoGJtPlHK0sIa0trmi3dn8srycPekpozdXapo4U1HHzaMHGL9/8nxY/ze5LZM+sOstdYmcf2rhgp0IXxNbKnlHgNLxgmg1lVOm7nL2VC/R1J227EV5FniFy23BzBU+TF41aK4HJzfLj81Ex4tqGRjkea4zRhuuTg4MH+An8lAFQbiodRmgfvrpp/z888+cOnUKX19frr76aq655hpUKuOzbeYqKSnh888/JyMjg8OHD1NXV8fnn3/O6NGj2503ZcoUCgoKOtz/7rvv5sknn7TIWPojfY7hRFUQXi6OHCmsNv3O5Vlw4Et5y1Jf4wFoRn4VgPEZVJDzUNf/DY4shUsXmf7YXdEHqBamb6l0vLtATOkgLwVfAEv82WUaZg0J6/a8xFAvvtx5mhadhIOyH1TyV2SZn3+qFz4MpBYoOgxRl1h2XGY4UVTLuPiATm8fGx/A6+tPUFXXhK97x00WBEEQLnRdBqgvvfQSrq6uzJ49mylTpuDo6Ehubi65ubmd3sec5f6cnByWLFlCdHQ0iYmJHDjQefFCcnIyt912W7tjlgqU+6ucMg0ezg4Ee7mQFO7N0bNmFEr99iI4usCEJzo95WB+NQoFcoN+Y/xiIHy4hQPUYvDqPqjqCZNbKvnF9Psl/kpNE1V1zcSZOIPaqNVxpqLOpBlXmyvParcVr1naFkrZKECtrmumqKbBUKBmzNj4AP69DnZmV3BFSmgfjk4QBME+dLvE39DQwMqVK1m1alWX5+n/6B87dszkB09OTmbnzp34+fmxfv16HnzwwU7PDQ0NZe7cuSZf+2KQXaYhLsgThUJBcrg33+7OM20WrOgwHPpRDiq9Oq+Wz8irIj7Is+sdbVLmw6/PynmB5uYEGqMuMdpNwBISQ7z4ZnceJbWNhHh30QfTLxqOrbDKGPpKdmv6R1yQCQGqoZK/xv4D1PpKqK/o+Qyqd7i8W9jZdIsOyxz6fF9jBVJ6qZG+uDk5sDO7XASogiBclLoMUF988UWrPrinp6dZ5zc1NdHS0oKbm+1yx+xJTpmaYVFyMdHgMG/qm1vIKdMwMLib53XTv8DFG8Y90ukpkiSRkV/NRFU31fSD58oB6pGlXc7GmkSnk/tbWmGJHzD0nDxeVNt1gOobDXXl0FgLLv0zx/pcBX/3v2MJIZ4oFJBZpOaKFGuPrJfK9QVSPQxQFQoIT7Npqyn9hhGDughQnR2VjIzxE4VSgiBctLoMUOfNm9dX4+jWtm3bSEtLo6WlhaioKO6++25uuOEGWw/LZhqaW8ivrGf+sEgAwx7zR8/WdB2g5u2BzNVyU35341tgAhRWN1CmbiQtqpPlfT3fARB5iWUC1PoKOT/Qwj1Q9RLbtJrqMvA2tJo6DaH2HrEZl12qxlGpINKv+w9z7s6ODPB3J7O4F5s99JWe9kBtK3wYnFoPTRpw7nrGuEit7fnjdOJ4US1ero6EdvUhCRgTF8ArazMpVzcS4OnS5bmC0BlJkjhTUUd0gJ2vjgjCeczug2oLKpWKhx9+mDfffJPnn38ePz8//vrXv/Lhhx/aemg2c6aiDkk6t4SbEOyFk4Oi+4b9uz+UWziN7nqL0oOdNeg3Jnk+FB2CslMmjLwLVuqBqufv4UyItwvprd9bpy6AVlM5ZRoG+LvjZKRK3JjEEK/uC8jsQXkWoAC/2J5fI3yY3L2i6FCXp205UcqDa8rYf6ay549lxIniWgaFenW7teyYOLmIapfohyr0wuc7TjPxld840Z9ayQkC3cygFhYWmn3B8PDwHg+mM++//367f8+fP5+bb76Zd999l5tuusnsVleHDx+25PCsYt++fV3evqugAYDGsjz27SsCINLLgR3H89gXrOn0fkmn99HspeLU4cwur7/2YC2OSqg/e4p9JV3/IXVqiWMoULDubYpUC7s8tytepftQAZmFVagbu/7+2+ruuWorNVDJuqNn2bprD26OxoM3h6Zq0oC8g79Toumf+X9H8soIdnfo9Lk5/7i3pCa3VMOO3XtxdrDfSv6YU3vwdAvi8MGebw7i1KBkKJC3azklpZ3nV3+fLn/Y++a3DKRky6R6SJLEkYIqJgxw7fZ1q9VJuDooWL7zOCFN5r8X25I5v5OC9Z6veq2Of68tA+CbjQeYo7owZlHF68s8/fX56jJAnTJlSref8s9nTpFUTzk4OHDbbbfx2GOPceDAAS677DKz7p+SkoKLi/0ume3bt48RI0Z0ec7u2iygipmXjjAUMY3IzmDT8RKGDx9u/Oem08GaAkie2e31X9m3g+RwR8aMGmnaoDPHEFG5m4gR/zHtfGMOysu3icMvg8CBJt3FlOeqrbv8K/j1gx2Uu4QzNy3C+EmSBJu8iPLUEWXGte2FTidRvPQXZgyNYsSIwR1uN/acnXUq5MdjB/CKSCCls64N9mBfJYQmmfUzN2pnGFEO5V3+fJ/d+jsAORrn3j9eq7PV9dQ1F3NpShwjRsR0e/7oQ7s5VVVvscfvC+b+Tl7srPl8vbPpFNWNJXi5OJLX5H5B/FzE68s89v58NTY2djpp2G0Vv4uLC5MnT8bfv/N8RVsIDZVntqqrzej9eQHJLlUT5OXSrsI+OdybH/flU1rbSLCx/LbqM6BtgMCELq/dopM4XFDD/OGdBHDGpMyHNX+C0kwISjT9fm2pi+WvntZZ4gcYGe1HmI8ry9ILOw9QFQo5D7Wf9kItrK6nUaszqUBKb5Chkr/WfgNUSZJzUFOu6f21wtK6LJSqqmvieFENbo4K0vOq0DRqu9yRy1THDVucept0/pi4AF765TiltY0dtxsWhC5U1zXz/uYspiUFE+jpwupDZ/tPr2NBoJsAdfLkyfz++++sW7eOSZMmcc011zBx4kSUStunrubl5QHYXeDcV3LKNB1aAg0Ok//oHSmsMR6glp2UvwZ23T82u1SNulFrWv6pXtJVsOYpuVhq0tOm368tdQk4usodBqxEqVRwZWo4n2zNoVLThJ9HJ03Q/aKhvJc5tTZyroLf9OW86AAPnB2U9p2nVlcBDdU9r+BvK3wYnPil004NO7MrkCS4UuXO90c17M6pYPKg3neX0O/YlRhiWsrA2NZm/juzy7ky1fLpU8KF64MtWdQ2aHni8kQyi2r5dk8ex87W2O8HUEE4T5eR5nvvvcfmzZtZtGgROTk53H///UycOJHXXnuNnJycPhlgVVUVOp2u3bHGxkY+/vhjPDw8SEtL65Nx2JucMk2HJuxJbSr5jSo7IX8N7HqGMyNfnpXutoK/Le8wiB4vB6g9pS6Re1RaeJvT812VGo5WJ7HmcFHnJ/nFyFX8kmTVsViDPkCNN6EHqp6Tg5L4YBN22rIlS1Tw64UPAyQ4e9DozTuzy3FzcmCOSg7ct50q6/1jIneQCPV2xce9i97CbaSEe+Pp4ii2PRXMUlLbwKfbcrkqNZykMG/DBx3RtkzoT7pdswoICOCuu+7irrvuIj09nZ9++olvvvmGjz76iNTUVK699lpmzpyJh0fPkq/fffddALKy5D8+y5YtY9++fXh7e7NgwQI2btzI+++/z4wZM4iIiKCqqoqlS5eSm5vL3//+9x4/bn9WXddMuaapQxN2b1cnBvi7d17JX5oJbv7g0fkWiyA36Pd0cSTOjCViQN76dPWTUHwUQjrmPnZLY51tTs+XHO5NXKAHyzMKuHm08W1e8Y0Gbb0cNHexmYE9yi6Vdxgzd0l4UKgXO+05ECpvDVAtMoOaJn8tPAAx4zvcvCOrnJExfng4KRke7cs2C/1hP15U22WD/vM5OigZFevPThFYCGZ4d1MWTS06Hpsur5aFeLsSF+jBjuxy7r7MAhuqCEIfMCupKi0tjbS0NJ599ll++eUXvvnmG/7v//6PoqIiHnrooR4N4I033mj3759++gmAiIgIFixYgEqlIi4ujmXLllFRUYGzszPJyck8/fTTTJ48uUeP2d9ll6kB403YB4d5c6Swk7zcspPdLu8DHMyvYkiED0pzc5UGz5XzUI8s7VmAqi6R+6pamUKh4Kq0cN7YcJKi6gZCfYykQ+h7oVad7ncBak6ZhtggD7MLHFUhXiw9UEB1XbPJM3x9qiILFMpzP5ve8AwG70ijeajl6kYyi2u5Ki0cqGZ8fCCvrTtBhaYJ/85SQkygbdFxqlTNpQmBZt1vTJw/G4+XUFzT0PUGE4IA5FfW8fWuM1w/MrJdms+Y+ABWpBeibdHhaGL7OUGwpR69So8ePcrevXs5efIkkiTh6+vb4wFkZmYa/W/jxo2AXHH//vvvs2XLFg4fPsz+/fv54osvLtrgFLrOMRwc7k1ueR3qRiMNxstOQFDXAWqjtoWjZ2sYas7yvp5nMMRcKgeoPVkaVxf3yQwqyMv8kgQrD3bSvkffC7UfFkpll6nNKpDSMxRK2WseankW+ESBY8+DxHbC04xuearvO6rvQzpuoBxQ9nZ5NLe8jiatzuT8U72xcfLj2/XstmA33twg1xo8PKV9MeyYuABqG7Uc6a5XtiDYCZMD1NLSUj788ENmzpzJzTffzG+//cbNN9/ML7/8woIFC6w5RuE8OWUaHJQKBvi7d7gtuTUP9dj5eah1FVBX1u0M6vGztTS3SKSZUyDVbgDzoPwkFJvZa1bXIm8v6tE3AWpckCcpEd4sz+gkQNXP5Fb2r2b9jVp5h7Hz85NNkWjvAWpFlmXyT/XC0+RCuIb2Kw47sspxd3ZgaKT8IS010gdPF0e2ZfUuD9VQIGXGEj/IHzq9XR1F/qDQraxSNT/uy2fBmGjCfdvvIjcmTi4oFvnMQn/RZYDa3NzM2rVruffee5k8eTJvvvkmCQkJvP/++2zevJknnniCmJiYPhqqoJddpiHKzw1nI43mDVuenv8p2VAg1XWAmpFfBcDQKN+eDS7pKlA4mF8spSmTd/fpoxlUkGdRD+ZXG2ak23FyA8/QfjeDeqa8/Q5j5gjzccXL1dGwV7xdkSQoz7ZM/qle+DD569mMdod3ZJdzSYy/YRcuRwclo2P92d7LQqnM4lqUCrreitgIB6WCUbEBIrAQuvXvdSdwdXLggckdf0+CvVwZGOwpPugI/UaXAeqECRNYtGgRRUVF/PGPf+T333/nzTfftJtWUxer7NKOLab0Qr1d8XN36nmAmldNoKcL4cbyMk3hEQixl5m/zK9p3ebUs+/yPa9MDUehgBWdzaL6Rfe77U6ze9BiSk+hUJAY4mWY6bMrmlJoqrXsDGpYa4DaJg+1tLaRUyVqQ9Wz3riBgeSW11FQVd/jh8ssqiEm0ANXJwez7zsmzp/T5XUU9uLxhQvbkcJqVh08y52XxhLoabxAcmxcAHtzK2hu0Rm9XRDsSZdFUlVVVbi6uqLT6fjxxx/58ccfu7yYQqFg+fLlFh2g0J5OJ5FbpmFsnPFKfIVCQXK4D0fOnlcoVXYCHFy6LULKyK8iNdLH7AKbdpLnwYpH4N+D5aIWU2jlrVv7cgY1zMeNS2L8WZZewMNTBnb8nv1i4PT2PhuPJWSXygFqTA8CVABVqBcrMwqRJKl3rwFLs2QFv55HgPz70CZA1ed5jjnv92v8QPnf206Vcf3IqB49XGZRLUlhPevx27Yf6vzhkT26hmBd72w6xVc7zftA6+rkwPWJTlhio5/Xfj2Bj5sTd03ovEp/TFwAX+w8zaGCaoYP8Ov9g7aSJIlHvk1ncmKQeH3aiYbmFv7w3z1cESVhv/tIda3LADU8XG4MrdF0vre70LeKaxuob24htosl3MHh3vx3Wy7NLTrDMiWlJyBgICg7n72pbWgmq1TNVb1tCJ5yDRQfgSYzXzeuPueWXfvIVanhPPu/wxw9W0Ny+HmFYb7RcOgH0DZZrjDHynLK1AR6uuDt2rMq/EGhXny9S0tRTQNhPm7d36GvWLIHalthaVCYbvjnjuxyPF0cSQlvH0gmhngR6OnM9h4GqPVNLZyuqOPqYWbsztZGUqg3vu5O7MgSAao9atLqWPJ7NiFerobcZVMcKqjm5e1VhA8o7NX77t7cCjYeL+GpKwbh49b5774hDzWr3KIB6tGzNazIKETTqBWvTzux6XgJ27PK8cadW209mB7qMkDVV9IL9iOndYYsvosZsuRwb5padGSVqhmk31Kx7ASEpXZ57UMF1UgSZr3BGuXiCbNe7t01+sisIWH8ffkRlmcUdgxQ/WLkvNjqPMsHRlaSU6bpUf6pnr7CPLOo1r4C1PIsObfZ0m3IwofBseVQXwlufuzMKmdUrH+HNjwKhYKx8YFsyyrv0ezyyZJaJOlcpwRzKZUKRsf6izxUO7X1VClVdc28dl0qU5NMT1OqbWjmhrc38ei3B2hoauH6S8z/8CNJEi+vzSTQ04XbxkV3eW6ApwuJIXK/4wcnDzT7sTqjLza1653oLjIrD54F4FRFs41H0nMikbSfydLnGHY1g6rf8rSgNQ+1uUHOpQzqegepg607SKX2tIK/H/L3cGZCQiArM86i052XM6tvNdWP8lCN7TBmDkMlv73loVZkyT8PBwv3Z9XP2BemU1zTQHYX6TPj4wMMOarm0j+fKjNbTLU1Ni6A/Mp68irqenwNwTqWpxfi4+bEhIQgs+7n5erEsxP8uXRgIH/66SCfbc81+7F/P1nG7pwKHp4yEHfn7lubj40PYG9uJU1ay+Sh6nQSKzPkYCi/sh6NsRaHQp+qa9Ky4XgxjkoFudXNNGpbbD2kHhEBaj+TU6rBzcmBEK/Oi5hiAz1wcVSe2/K0IkueCey2QKqK6AD3zvenv0BdlRZOQVU9+89Utr9B3xC+n1TyV9c3U6Zu6lGBlJ6vuzMh3i72F6BauoJfr82OUp3ln+qNb+2H2pNtTzOLanFxVBId0POfzZg2eaiC/ahvauHXo8XMGhJqtLNKd1wcFXx020imDw7hb8uP8N5vWSbfV5IkXv01kwhfN24cZdrs65g4f+qbWzjY2rGlt/afqaSgqp4rkkMBevQBTrCsjcdLaGjWccvoAWh1cvvI/kgEqP1MTpmamECPLnd5cnRQMijM+1wlv6GCP6HT+4AcoA69iGZP9aYPDsXFUcmy9POq+b3CQOnUb3qhdrWBgzlUIV721QtVkqAi2zppFm5+4BcLhQfYkVWOt6ujoVXb+aL83Ynyd+vRtqeZxbUkhHjiYO7ubG2ogr3w93AWy/x2Zv2xYuqaWrgqtWf5xQAujg68e8twrkwN56VfjvPvXzORTOiCsvZIMQfzq1k0LQEXR9O6Q4yODUCh6P3GE3rL0gtxcVQaUgbEMr/trcw4S5CXi6FgzlIfRvqaCFD7GVNzDPVbnkqSJG9xChDQeYBaUttAYXUDqb3NP+2HPF0cmZYUwupDZ9G2bb+ibM157CczqDmtW+DGBZm/i1Rbg0K9OFmibv9c2FJtETRrrDODCoYdpXZklzMqNqDLIHJ8fCA7s8vNfm4yi2pJDOlZBb+eUqlgTJw/O1vzYAX7sDyjkBBvF0bF+vfqOk4OSv5zQxrXj4zkzY2n+NeqY13+nFt0Eq/9mkl8kAfzzCi+8/NwZlCot0U+6GhbdKw+dJZpg0NICvPC2VHJSTGDalPqRi2bMkuYPSSMSD83fFyUpOd1sv25nRMBaj/SpNWRZ+IuQYPDvalp0Mp9G8tOgM8AcO6485TewdYXcGpPG/T3c1emhlOuaeo4O9aPeqHmlGpQKjC6w5g5EkO9adLqOG0vuY6GCv7O2+f0SvgwqDpDTXlRh/6n5xs3MJDaBi2HzdguslLTREltY48LpNoaGxdAYXUDeRWiH6o9qK5vZnNmKXOGhvdqdlzPQalg8fyh3D4uho+25vCX/x3umBvfall6ASdL1DxxeWKHor7ujI0LYN/pyl7nJm7LKqdc08RVqeE4OiiJD/K0v/Sgi8yGY8U0anXMHhqGQqFgoL+TmEEVrO9MRR0tOsmkJdzktjtKlWZ2u7x/ML8KB6XCcL+LzaTEILxcHVl+/jK/X0y/mUHNKtMQ5e/eozy4ttpW8tsFa/RAbau1UGqIMsfQhqcz+gKq7WZse6pPl1BZIEDV58fuyO7drlaCZaw9XERTi673rfnaUCoV/O3Kwdw/KZ6vd53hyR8yOszYN2l1vL7+BMnh3obcT3OMifOnUasj/UxVr8a6PL0QL1dHJiXKxWGqEE9OiiV+m1p58Cyh3q6MaG0jNtDfiVOlatT9sHhNBKj9iDk5hoNCvVAo4EhBlbzfeDcV/On51SQEe5pUBXohcnVy4IrkUNYeKaKhuc2sgm+03IKowQ63/zxPThc7jJkjIcQTpQKO20uAWpEl5wL79KxBfrda26+NcjlNUmjXH9CCvOQ2PdtPmb48qg/0LTGDOjDYk0BPF7FdpZ1YllFAdIB771vznUehUPCnGYk8MV3FzwcKeOTbA+2q7r/bm0deRT1Pzkjssh6hM4Y81F4s8zc0t7D2SBFXJIca8l9VIV4UVjdQ29B/Wxv1Z7UN8oz+rCFhhtdFgr8TkgSH8vvfMr/ZAeqePXt4/fXXefbZZ8nKkmc2NBoNe/bsoabG/v+I92eGHMPA7nMM3Z0diQ30oCg/C5rrupxBlSSJg/lVpF2ky/t6V6WFy/k7x0vOHewnraYkSWptMdW7/FOQg/WYAA9O2EuAWp4lz2Q7WOnDk6sPZxThjHfPM+mP/biBAezJrWj/QaYLx4tq8XV3ItjL+PaT5lAo5DzUHdkiD9XWSmob2JFVztzUcKvsuqZQKHh4agLPzk5i9aEi7v1iLw3NLTQ0t/DWhpNcEuPHJJV5ba30fNydSA737tUHnU3HS1A3apmbdi7/NSFYfv8Reai2sf5YMU0t8vK+3kA/uTVfRj9c5jc5QG1paWHRokXceuutfPDBB/z000+UlMh/yB0dHXnwwQf5+uuvrTZQQd7GMsDDGR9303pBJof70HT2uPyPLlpMnamoo6qu+aKs4G9rbFwAgZ7OhqbTQL9pNVVc09jtDmPmsKtKfmtV8LfKq6jjgDYGlfaUSeePjw+kUavr2JasEyeKa1GFeFksiBkbH0BxTSO55XaSI3yRWnXwLDpJ/mBrTXdNiOOFeUP47UQpf/jvHt77LYuS2kb+OGNQr15TY+MCOJBXZfIHrfMtzygk0NOlXd62vs+vWOa3jZUZZ4nwdWP4AF/DMS8XJQP83ftlHqrJAeqSJUv49ddfefrpp1m9enW7T+8uLi5MmzaNzZs3W2WQgiy7zLwl3MFh3vjW5cj/6CJAzdA36I+6+Cr423J0UDJnaDgbjpecW6LybZ1BtXKrqVMlapalF/T4/tml+tn1Ll4fkgT7/otDc/ezG4mhXuSWa6hvsnGDZ51ODlDPyz/dm1vB5hOlFnmIndnlHNTF4tFYDOqSbs8fHeePg1Jh0jK/JEmcKKq1yPK+niEPVSzz29TyjEKSwrwZGGy5n21nbh49gH9fn8rO7HLe2HCSiaqgXncNGBMXQJMZH7Taqm1oZsPxEuYMDWtXHBbl746rk5ITxWIGta9V1zez5WQps4aEdvjgkhrlS0Y/rOQ3OUD93//+x9y5c7ntttvw8+u4h298fDx5eXkWHZzQXo65AWq4N/GKQpqdfcCj86WgjLwqXByVvdrl5kJxZWo4TVodvx4plg+4+YGrr5zHayWSJPH49+k8+m06hwt69iaSbUp+ct5uWPEofgXdb2GcGOqFJNlB0+3aQtA2tKvgb2hu4f6v9nPfF/sorW3s9UPsyC7ntEtrjnZherfne7k6MTTSh20mFEoVVjdQ26i16O9WXKAHgZ4u7M2tsNg1BfOcKa/jwJkqixZHdWfesEjeuXk4cYEePHXFoF5f75JYf5QK2NmDDzq/HimmSavjyvO+fwelgoHBnqIXqg38eqSI5haJ2UM7viZTI30oqKq3yPtlXzI5QC0oKGDYsGGd3u7t7U11df+L0PuL2oZmSmsbzVrCHRzmzUBlIRVu0dDFUtDB/CpSInxwMrNVyYVo+ABfIv3cWKZf5lcoIDgJSo9b7TH1zbYVCvjP+pM9ukZOmQZXJyWh3p3vMEaOvMLh3NB9YKXf8vR4kY3zyo1U8H+58zSltY00aFt4Z1PvPjhIksTOrHK8YocDCig8YNL9xscHcjC/uttikMzW58+SM6gKhYK0KN9+mVN2oVhxUH5/uDI1rJszLWvmkDA2Pjmp080kzOHt6sSQCJ8eFUotyygk0q/9UrKeKthLBKg2sOrQWSL93Iz2Mte3j+xvy/wmRyQeHh5UVVV1evvp06fx9+/dkoPQOX0FvzlFMEFeLiQoz5JL502ctS06DhVUW7wKtb9SKBRcmRrOtlNllKtbP20GDYKSY/ISuYW16CT+vS6TuCAPHpmSwPpjxT16E5Fn1z27LvLJlgNUJxMC1JgAD5wdlbb/Q2PogSoHqHVNWt7fnMX4gQFcPyKKr3edkXv99tCZijoKqxsYPjBKLiQ0MUAdNzCAFp3EruyuZzH1nRAs0WKqrdRIH7JKNdSIammbWJ5eyMhoPyL9etdz2NbGxAeQnldlVipPubqRbafKuKqT4rCEEC+Kaxqprhevzb5SVdfE1pNlht6n50sO90apkFdL+xOTA9QRI0awYsUKo5Wj1dXV/PTTT4wePdqigxPOMQSo5hTB1FcSQBWHGjvvk3eyRE1Ds+6ir+Bv66rUcFp0EqsPnZUPBCdBQxWoiy3+WMszCjhRrOaJ6YncNSEWHzenHs2iZpequ84/baqD/N2AaQGqg1JBQrCn7VtNlWeBgwt4RwLy7GmZuonHpql4ZJrcmeLNHs46w7l97cfGB8j9UE0MUIcP8MPFUdntMv+JolrCfVzxdjWtsNFU+hmRw/2wdUx/d7yohsziWqsXR/WFMXEBNLdI7Dtteh7q6kNnadFJnX7/qpDWSn5bf7i9iKw9UoRWJzFniPGfibuzI6oQL0O9SX9hcoB63333kZuby6233spvv/0GQGZmJt9++y3z5s2jvr6ee+65x1rjvOhll2pQmLtLUJm8/LmrNqDTSk39J6qLvYK/rUGhXqhCPM9V8we15nuVHLPo4zRpdby+7iTJ4d7MTAnFy9WJey6LY+PxEg6YUbig32Gsy/zTMzugpQlcfUxa4gd5md/mzforssE/FpRKNI1a3t+czYSEQEbG+BPh68YtYwbw4/58skp7liu7I6ucQE8X4oM85QBVXQQ1Z7u9n6uTA5fE+HdbKHW8qNaQLmFJ+hWP9H62ZHchWJ5eiINSwawhfbu8bw2XxMgFf+Zs/LA8oxBViCeDOukZrM+3FoVSfWflwbNEB7iTEtF56kdqpJwW1J/a05kcoA4ZMoS33nqLnJwcnnnmGQBeeukl/v73v9PY2Mjbb7/NwIEDrTbQi11OmYYIXzdcnRxMv1NZJgAndWGc7OTNIiO/Gm9XR2IC+vdSlSUpFAquSg1nT26lvHwcnCTfYOEA9fu9eZypqGvXbPu2cTH4uZs3i5pXacIOYzmb5Wb3g+bg1GBazlliiBcltY1UappMHovFlWcZ8k8/33GaCk0Tj00/15HigUkDcXFU8vq6E2ZfWpIkdmSXMybOX14Wa91RirPpJt1/3MAAMotrOy08aG7RkV2qsfjyPoCvuzMxAe6GLYqFviFJEisOFjJ+YCCBnr3va2trni6ODI30MbkjREFVPXtyK7ssDovwdcPd2cH26UEXiQpNE9uzypk9xPjyvl5qlC9Vdc39aptks6piJk2axMaNG3nvvfd48sknefzxx3nrrbdYv349l156qbXGKADZZWrigsxswl52AknpTJ4UzNGzxv+QZeRVkRrla5VG0/2Zvjp1RUah3AHBzR9KLRegNjS38OaGk4yMbt9s29PFkXsui2fziVKTl91ySk1I/8jeDJGXgH8cjs210Nz9m5R+5s9m/VB1LVCZAwFxqBu1fLAli0mJQQwfcK6LSJCXC38YH8vKg2c5UmhesJZTpqG4pvFcH8fQIaBQmlUoBZ1ve5pbpqGpRWfRAqm2hkaKQqm+diCviryK+j6t3re2sXEBHMyvRmPCVpgrWleVrkrtvK5B2ZoeJALUvvHL4SJadFK75vzG9MdVF7PLtp2dnZk8eTJ33XUXd999N9OnT8fNzc0aYxNaSZJETqmm6xxDY8pOQkA8rs7OHCnsWI3d0NxCZnEtqWJ5v4PoAA9So3xZnl7YWsk/GEosV8n/+Y7c1mbbiR0+HNw6NpoAD2f+s960WcFut8Ctq4CzGRA3Ebxb/7DWFBo/tw39Ep7Nlvmr8+W0BP94PtueS1VdM49N69jP9+7L4vB2deS1X82bRd3ZWuA0trWvKM4eEJhocoCaEuGDt6tjp8v8+vzdxJDeV1wbkxrly9nqBkpqGqxyfaGj5emFODsqmZEcYuuhWMzY+AC0Oom9JnwgXp5eSFqULwO6WXFLCPESS/x9ZNWhQuICPRgc1vX7TGKoFy6OSg72o0Ip0VeoHyitbUTT1GL+PuulmSgCE0gK8+aokQD1SGE1LTrJUHAhtDc3NZyjZ2vkXqDBg+RWUxbI36ltaOa937K4TBXE6LiADrd7uDhy78Q4fj9Zxh4Tel1ml6nx93DG193Z+Am5WwEJYieCV+un7Nru8yxDvF3wdnW03QxqawW/xiuaD7dkM3VQsNHXqo+bE/dOjGfj8RL2nTa9N+iO7HKCvVza/17pC6VM+Dk7KBWMiQtgeyf5eyeKa3FQKogPtszuXufTt5Ppb4UP/ZW2RcfKg2eZkhiMl4WL3mxpRLQfTg6Kbpf5T5XUcvRsjUmzx6oQT8rUNk4PugiUqRvZkVXeafV+W04OSpLDvfvVqovJAerUqVO7/W/atGnWHOtFy6Qm7OfTNsrbcwaqSA735tjZGnS69n9001vz14z1TRNgztAwlAq5KICgQdBYY9LMY3c+3ppDZV0zf7w8sdNzFo6JIdDTxaTcyuzSbjZwyNkMTu4QMeLcDGptUbfXVSgUDAr1tt0MamsP1O+ynKmub26Xe3q+O8bHEOjpzMu/ZJpUBCBJEjuyyhkbH9D+jT18GGhKTf45jx8YSF5FPXkVHbcdPV5US2ygBy6OZuSNmyE53AcHpaLftY7pr3ZmV1Cmbrwgqvfbcnd2JDXSt9t+qMvTC1Eq5PfF7iQYCqXEMr81rTlchE6i2+V9vdQoXw4VVKNt0Vl5ZJZhcoAaHh7e4b+QkBCam5spKCjA0dGRsLD+X9Voj3rUYqoiB6QWCEpkcLg3mqYWTp/3R/RgfhVhPq4Ed9Xc/SIW7O3KmLgAVmQUIukr+XuZh1qhaeKj33OYmRLKkC4+GLg5O3DfxDi2Z5UbWiF1Jqesm/SP7M0QPQ4cncGrteWYiQFYYqgXJ4pqbVP5WZGN5OjGf3bXMn1wCCkRnT9f7s6OPDR5ILtyKth6qvuK5KxSNWXqxnPL+3r6QilT81AHyvffZuQxTxRbp4Jfz83ZobV1TJXVHkM4Z3lGAZ4ujkwZFGzroVjc2PgADhd0vvGEJEkszyhkbHyASX8vEvUBqq13orvArTpYyMBgT8Pz3Z20KF8amnWc7Cc/F5MD1C+++KLDf19//TVbtmzh1VdfRaPR8Nxzz1lzrBet7FI1zo5Kwn3MyPVtreAnMIHBYfIf9vOX+TPyqkSD/m5clRpOTpmGoy2tRQG9rOR/f3MWdU1aHu9iNlBvwZhogrxc+Pe6E50GiOpGLSVd7TBWUwjlJ+XlfQAXb1ocXE1a4ge5wXxto5bCahvkOZZnUeYcQU2DjkWtPU+7ctPoAUT4uvHK2u5nUXfo80/jzwtQQ1NA4WBygBof5EmwlwvbzlserWvScqaizuQ/HD2VFuXDwfxqu2kd06TVoWnuH7Mz5mjUtrDmcBGXJ4eY10mlnxgbJ288sTfXeB7qoYJqcsvrTC4OC/NxxcvFUfRCtaKSmgZ25VR0W73flr6dZH9ZdbFIDuqcOXOYNm0aL730kiUuJ5wnp0xDbIBH17sEna+sdWk4IIGEEE8clYp2Vc5VdU3klteJ/NNuzEwJw9lRyT83FiO5B/WqUKqouoHPtudy9bAIwxJYV1ydHHhgUjy7cyo6zQ8zVPB3NoOas0X+GtcaoCoUNLsGmjyDqq9AP36277c8bSk7RbrGnyuSQ0kO7/6DlIujA49OS+BgfjVrj3S9qcLOrHLCfFw79hV2cpPbipkYoCoUCsbFB7Ajq6xdkHiiWI0kYdUZVJB7G1bXN3O6vGOKgS28sPoYT/xaRovOPgJmS/kts5TaBu0FVb3f1vBoP5wdlJ0u8y9PL8TJQcEVyaatkioUCgaGeNq+j/IFbM3hIiTJtJQLvZgAd7xdHftN3rrFiqSSkpLYs2ePpS4ntJFd1k2OoTFlJ+Xdd1w8cXVyYGCwJ0fbBBkH8/X5p74WHOmFx8fdiZeuGcLunAqOaCNoKTna42u9tfEkOkkyWonemZtGDSDEu/NZ1OwyeakmtrMtcLM3yy2yQoYYDjW5Bpo8g5rUWhlqrAuEVbVooSqXky2hLJre/eyp3vxhEcQFefDar5mdBkmSJLEzu5yxcQHGZx7C00wulAIYNzCQMnVTu2KyE4YKfusGqIYZETtZ5l9/rJjSOl23aSn9zfKMQvw9nBk/MNDWQ7EKVycH0gb4Gv0g3KKTe79OVAXj4256cZgq2KvfLCX3R6sOniUxxMukyQ49hUJBapTvxTWDCnDs2DGUStEUwNK0LTrOlNeZl38K8gxq4Lk/7IPPq+TX7/feVR6kIJs3LJLXb0hjb10ITWePoenB/udnyuv4bk8eN14ygCgzdgNzdXLgwckD2Xu60mhuZU6ZvMNYtLG2L5IkF0jFToA2v5vNZgSoni6OxAV6cLigbz9xV5/NwkFqwTs8sdMda4xxdFDyxPRETpaoWZ5RYPScE8VqyjVNjDl/eV8vfBjUV0B1nkmPqQ9atrVpN3W8qBY3Jwfzdn7rAVWIJ65OSjLsoGH/mfI68ivl/rrL0o0/9/2RplHLhmPFzB4ShpPDhfs3bmxcAEcKq6mub//+tjunguKaRuaaWRyWEOJJhaaJMrXxjSyEniuqbmDP6QqTi6PaSo30JbO4ttPdJe2Jyb9te/bsMfrf+vXr+cc//sEPP/wgmvVbQV5lPdrudgk6nyTJM6iB52bqBod7U1LbaNj1Jj2vmrggD4vvEX6hmpsWwbCRY3GT6nny45WoTWhq3dZ/1p/A0UHBw1PM323thkuiCPNxNTqL2uUOY+VZUFNwLv+0lRygFpk8Q5gc4dPnM6i/bt0OwMSxY8y+78yUUJLDvXl93UmatB3zIXe0NtbvUCClZ2ahVISvGzEB7mxv8wEis7gGVYineWk5PeDooCQl3McuZlC3tT6vCf5OrDlcRKPW/v8AmmLd0WIamnUXXPX++cbGB6CTYE9O+1ZtyzMKcXd2YFqSeb1f9ektopLf8lYfOotkRvV+W0MjfWjRSWZvbGILJgeoCxcu5NZbb+3w30MPPcTXX3/N6NGj+b//+z9rjvWilNO6hGvWDGpNITSp28+ghsuzUEfP1iBJEhn5VaSJ5X2zpA6Tg6WmwqPc9snuTitez3eiuJal6QXcNi6mRx0TXBzlWdQDZ6rYfKK03W1dtpjK+U3+Gjep3eEm10C5AX6dacuwKeHeFFTVU9FHPQ3L1Y2cOJoOQNTAIV2fbIRSqeDJyxM5U1HH93s7zoLuzK4gwtet85nskBR5W1gTA1SQl/l35VQY2rdkFqkNe5JbW2qUL0cKq2m2ceuYbafKCPZy4frBntQ2aNmcWdr9nfqBZekFhPu4MqLNDmYXorQoX5wd2+ehNml1rDl8lumDQ3BzNq84TP/672ybbaHnVh06S1KYN/Hm7i6J/HMG7GLVpTuOpp744osvdjimUCjw8fEhJiaG2NhYiw5MkGWX6nugmvFC1BdIBZ3rs6nfZeJooTyzU1rbKCr4zRUst5r64zAdc/ZXcesnu/nsD6O6nYV+7ddMPJ0due+y+B4/9PUjo3jvtyxeX3eCiaogFAqFvMNYmYZrhney7WD2ZjkP2T+u3eFm19Y8uppC8Og+p07f3ulIYTUTEoK6Obv3Pvw9mwjdWXQuHig9e9bSZ1JiECOj/Xhzw0muHRFpmGHW6SR25pR3PRvk6HKuUMrvSpMeb3x8IF/vOkNGfjUxAe6UqRutXiClNzTSh4+36jhRXGtSMZk16HRyX9nLVEEMDdHi7+HM8oxCLk8Otcl4LKVS08TvJ8u489JYq8+G25qrkwMjBvi1y0PdeqqUqrrmHhWHBXvJG32IGVTLKqyqZ9/pSv44o/M+2l0J9nYl1NvVLlZdumPyDOq8efM6/Hf11VczefJkEZxaUU6ZBh83J/zMSE43BKhtlvh93Z2J8HXjSGG14ZOTqOA3k5sfeIYyyKGAd24ZzuGCahZ+vLtDzlZbGXlVrD1SzF0T4vDz6GSnJxM4Oyp5aMpAMvKr2ZRZAkCpuhF1o9b4DKpOB7m/y9X75xUCNbu1BqUmNOsHSG6dfT9cYP1l/tLaRj7ffprRPpUoA+I7jN1UCoWCP85IpKS2kc935BqOHy+qpaquufPlfT0zdpSCc+2qtp8qMxRLmZM72xv6GZGDNqzMzSyupVzTxLj4AByVCmYNCWX9sWKT9ne3Z6sPn0Wrk7jyAq3eP9/Y+ACOFdVQVSevlixLL8THzalHH0wVCgWqEC8RoFrY6kNy/cDsIT3vO5/a2p7O3l24Gd8XiOxSDXFBHib3OQPkANXFGzzbzxINDvfm6NkaMvKrcFQqDBXaghmCk6DkGDOSQ3nvlhEcLaxm4ce7qK4zHqS++msm/h7O3Dmh9x/irh0RSZS/G6+vOynPnupbTBlb5ik6CPWVHfJPAZpcWoOzWtNaTfm6OxPp58bhPshZ+mBzFo3aFgY6lEBAz2ecAUbHBXCZKoh3f8sypGPoly87LZDSCx8GDdU415n2HPl7ODM4zJttWWWG1jqqUPOX33pigL87vu5ONq3M1W9UoC8Yuyo1goZmHeuOdt3uy94tTy8kPsjD8CHtQjc2PgBJgl05FdQ3tbDuaDGzhsit9noiIcSrteXahdV2zJZWHjxLSoQ3MeZ29mljaKQvOWUawwcRe2XyEv/bb79t9sUVCgUPPvig2fcTzskp0zBuYDd/TM9XdkKePT0vqE0O92b9sWJ2ZpeTFOZ9QTactrrgJNj3X9DpmDY4hA8WjuC+L/Zzy8c7+fLO0fi6n5sl3ZFVzu8ny3h2dhKeLib/qnXKyUHJw1MS+NOPB1l/rMRQHWt0BjVns/w19rIONzW7BgAKqDGtkh9gSIQPR6xcyV9S08AXO08zPy0Ep+N54H9tr6/5x8sTufLtrXy8NYdF01TszC5ngL87Eb7dbHrRWijlUX3S5McaPzCAz7afJtTbFX8PZ4I8XXozdJMpFAqGRvqSbsMAdXtWObGBHoT7unEWGBntR7iPK8szCrl6WCcpKHbubHU9u3MrWDRVZd4EQT82NNIHVyclO7LKadLqqGtq6VXvV1WIJ9/sbqa0tlHsWGgBeRV1pOdV8dQVg3p1nbarLpeprJ+21VNmBaj6X9LzPw11dVwEqD2nadRSVNPQ9TaWxpSdhLjJHQ4PDvNGkuDAmSoWjBlgoVFeZIIGQXMdVJ0G/1imDArhg1tHcO8X+7h5yS6+ums0fh7OSJLEq79mEurtyoIx0RZ7+PnDInhn0yleX3eC8QMD5B3GjAVb2ZvlDyneRpaBlI7gEWTyDCrIeahrDhdR09Bstc4P723OQquTWDTcGY619HoGFeQ2ajNTQvno9xwWjIlmV3Y5M1NMWBoLHgwOzrhXZZr8WOMGBrLk9xxWHy5i+ADfPg1qUiN9ePe3MuqatLg79/7DkDmaW3Tsyi5vF4gqlQquTA3n4605VGqaepXeYisrM+RK6Qu9er8tF0cHRkb7szO7nIKqekK8XRgV69/j6xm2PC1WiwDVAvTL++Y05zdGX1dwML/KrgNUk+ftV6xYQVJSEikpKbz22mv873//43//+x+vvvoqycnJJCUlsXLlSjZs2GD4b/369dYc+wUvt7wHBVIN1XKPy8COzc0Ht1mmGioq+HsmOEn+WnpuR6nJicEsuXUkWaVqbv5oFxWaJjZllrDvdCWPTE2w6Ey1o4OSR6YkcPRsDT/uyycmwB2H84s3tE1wZofR5X0D7zCTc1DhXB7qESvloRbXNPDVrjPMHxZBpNQ6s+vf+wAV4PHpKuqatDz2XTo1DdqO25sa4+gMIclmBaijYvxxVCpo0ur6LP9ULzXSt7V1TN/v+HUwvwpNU0uHJvZXpoaj1UmsOWz668yeLM8oZEiEj/mbpPRzY+MDOF5Uy2+ZJcwZGt7x/cUMCSGi1ZQlrTp0ltRIH7N6aRvj4+ZEXJAH6XZeyW9ygPrdd9/h7OzMN998w+zZsxk0aBCDBg1izpw5fPPNNzg5OfHtt98SERHR7j+h57INOYZmvEGWnZK/BnWs8IvwdcPHTZ79ShMFUj2jf17P21FqoiqIj2+7hOxSNTcv2clLazKJDnDnupGRFh/C3LRwYgM9qKxrJs7Yh5eCvfIsb1wXAapXmFlL/PrqcGv1znt30yl0OomHpyTI/VvBIjOoIP+RnDcskt9PynmSY7orkNILHyYv8etMa9/k4eLIsAG+gPW3OD3f0Cj552OLPNRtp8pRKDr2lU0O9yYuyKNfNu3PKdNwqKDa7Ob0FwL970dzi9Tr7z/Q0xk/dydOlogAtbdOl2s4mF/do96nxqRF+pKRX2XX+cEmrwWtWbOGe++9F0fHjndxcnJi1qxZLFmyhGeffdaiA7yY5ZTJAWpMgDkBascKfj2FQsHgMG8y8qt61D9NAFx95NZNJcc73HRpQiCf3n4Jf/hsDw3NOv5zQ5pVdp5xdFDy6NQEFn2XTqyxDy/Zm0GhhJguNs7wCoN807cmDvJyIdTb1So7SpXUNvDN7jyuHRHJgAB3qMgCFx9wNzP3uguLpiWwPKOASD93Qn1MXGoMH4bD3k+gIhsCTdtgYVx8IHtyK/usB6pesJcr4T6uNtlje9upMgaHeXdYxlcoFMxNjeA/G05QVN1g+vNuYXkVdTz980HK1aYXhNTUN6NQwJyhF1+AOjTSB3dnB4K9XBgS0bu2ZQqFgoQQL0PhYH/w1I8HzWvBJEk8Wf86vqMXMHJq7/PmO7M8XU7JmtWL6v22hkb68POBAopqGgjz6SYn30ZMDlDVajW1tZ2/yGpra7u8XTBfTpmGcB9X8xokl2XKOYZ+MUZvvn9SPHmVdb1atrnoBQ+C0mNGbxo3MJAv7xzNb5mlVm1Nc2VqOJnFtcwzVoCSsxnCUuW2WJ3xDpcb9Wsb5b6fJkiJ8OawFZaQfzteSlOLjtvGxcgHyrMgIK7HLaaMifJ35/mrU/B0MSN/NnSo/LX4kMkB6o2jotA0am3SY3hopK9hC+O+Ut/UwoEzVdw+Psbo7VelhfP6+hOsPFjIXRPijJ5jTdmlam75aBeaRhNTO9q4JTLaZkG1LTk5KHl29mBCvF0skketCvFk2YFCJEmy+2KzvIo6vtubR2qkj8k/+7CmXKZVb+K3bfU0TZzf444HXVE3avl0ey4TEgKJ9LPM9smpbRr29/sANSkpia+++oorr7ySAQPaF9icPn2ar776isGDB1t8gBez7DKN8RmyrpSdlBuzOxj/Q2zPCdH9RtAgyN0KuhZQdvzwMDLGn5ExPS8sMIWDUmG8krNRLc+Mjn2o6wt4tX4Krz3b6YeZ8yWH+7DheInFC3G2ZZUR6OnMIP2yeEUWRI6y2PX1brjEzMLAoEQklChKjkHyPJPuEubjxrNzbPM+mBrlyy9Hivq0KGlPbgVNLTrGdRL8xQZ6MCTCh+UZfR+gHi+qYcFHu5EkiW/vGdsuB1/o2s2jLVdEmxjiRW1rwa+9BkJ6a4/I+dJv3TRcXs0xxc69kAdDWw7z074z3DQ6xuLj+mRrDhWaJp68vGfN+Y1JCvPGUakgI7+KK1Lsc0MNk0P9J598ErVazezZs3nsscd48803efPNN1m0aBFz5sxBo9HwxBNPWHOsFxVJksguVRvPMeyKvsWUYD3BSaBtgMpcW4+kozM7QKftOv8U2gSophewpET4IElw7KzlZlElSWJ7Vjlj4wPl2RVtI1TnWyz/tFec3Gj0CIfiI7YeiUlSW/NQD1q5HVhb27LKcHJQdFnpfVVqOAfzqw0pS33hYH4VN364EwclfHevCE5tKaFNJb+9+/VIMYNCvUwPTsHQ0s9foWbNho00aS275XClpoklW7KZkRxi0c11XJ0cSArz7vNVF3OYHKCOHDmSL774guTkZNasWcO7777Lu+++yy+//EJycjKff/45I0eOtOZYLyrlmiZqGzrZJagzLc2t+XIiQLWqoNZK/hLjy/w2lf0bODhD1Jiuz9O3n6oxp9WU5XeUOlmiprS2kfH6GbjKXJB0Fqvg7616r1j7/DkbMSTCB4WibwuldmSVMyzKr8sZ9TmpYSgU53LorG1vbgW3LNmFp4sjP9w7joHBIt/elvT52CftvJK/TN3IntMVzDBne94WrbyaFj8VgHjNfr7fm2fRcb2/JQt1k5YnLDh7qjc00oeDedXodPZZKGXWOl1qairffvstFRUV5OXJP4TIyEgCAixXzCDI9LMNZi3xV+TIs2ciQLUuQyX/MUiaY9uxnC9nM0SNBuduZgDaLvGbKNTblQAPZ4sWSp2/A5GlK/h7q947Fr8TW6Gprvvn1Ma8XJ2ID/LssxmR6rpmDhVU8+jUji3t2grzcWNUjD/LMwp4ZOpAq+YhbjtVxl2f7SXMx5Uv7xptvEew0Kf8PZwJ9HS2+1ZTG44VI0lweXJI9yfrnU2HxhoYdgtSRRZXaE6yaNMprhsZiYtj79sLFtc08Nn2XOalRVil8DI1ypevdp0hu0xjlx/kepTN6+/vT2pqKqmpqSI4tRLDNpbmzKDqK/iDRIBqVS6e4Dug00Ipm9GUQ9Ghrvuf6rn5gaOrWTOoCoWC5AgfixZKbc8qJ8rf7Vxfv4rWANW/7wtqjKn3igOkdn1v7dnQSB/S86r7pHXMjuxyJEnuXNCdq9LCySrVcNSC6SHn23CsmDv+u4cB/u58d+9YEZzakYRgLzLtfIl/7ZFiIv3cGGzOFuDZv8lfYyeiiJnACI5SXF3Hd3ssM4v69sZTaFskFk2zzt/01NZ+6Pa6zG/5cjMzlJSU8Oqrr7Jw4UKGDRtGYmIiu3btMnruhg0bmDdvHkOGDGHSpEm8/fbbaLXaPh5x38kqU+PkoDCvYk8foAZ0PaMhWEBQktFWUzaVu0X+2l3+KcgV8l7mNesHSAn35mRxLQ3NLT0YYHvaFh07s8sZ3zbAKc+Sg2d36xaZmareO0b+n36yzJ8W5UuZupGz1Q1Wf6ztWWW4OTmY1FN5VkoYjkoFyzOss8y/6uBZ7v1iH4NCvfj2njEEefXNNrOCaVQhnpwqrrXbnpvqRi1bT5Zx+eBQ82b4c7ZASAp4BELsZTg21XBNRCXvbDrV6/fIvIo6vtl9hhsuiTIvJ9YMA4M9cXd2sEn/ZFN0GqAOGjSIwYMH09TUZPh3UlJSl/+ZW8Wfk5PDkiVLKC4uJjGx8/yKzZs38+CDD+Lj48P//d//MW3aNN555x1efPFFsx6vP8kp1RAd4GFeO6iyE3LQ4SoKAqwueBCUn5RzkOxF9mZw9oLw4aad7xVm1hI/yIVSWp1kkeW6w4U11DZoGdd2B6KKLLvJPwVo9IgAB5cOGzPYK/0OcX3xB2fbqTJGxfqb1FbHz8OZy1RBrEgvtHi+20/78nn4m/2kRfnyZetWw4J9UYV6oWlqoaCq3tZDMWpzptzqboY5y/vNDZC369yKVWvf6QdizlJc08g3u8/0akz/WX8SB6VC3rzEShyUClIifGzSP9kUneagXn311SgUChwcHNr925KSk5PZuXMnfn5+rF+/ngcffNDoeS+//DKDBw/m448/NozHw8ODDz/8kIULFxITE2PRcdmDnDKN+VvsiQr+vhOUBC1NclGavaRU5GyG6HHgYGJquXcYFOw36yH0jbsPF9T0ertcff5puxZF5dkQM75X17UohYOcc9xPAtSkMC+cHBSk51cx00INvY0pqm4gq1TDDZdEmXyfq1LD2Xi8hH1nKrnEQm3Yvtx5mmf/d5hLBwby4a0jLNr+TLCcc4VSaov18bSktUeK8PdwNq89YN4uuZuLfsXKOxz844mt3c/o2Mt497csbho1oEdbXZ8srmXpgXzumhBn9V68aVG+/HdbLk1anVV6uPZGp7/Nixcv7vLfluDp2X1S7qlTpzh16hT/+Mc/DMEpwM0338z777/Pr7/+yj333GPxsdlSiyRxuryOKYOCTb+TJMk9UIfeYL2BCecEt/YgLTlqHwFqVZ4cLF9yl+n30c+gSpLJTfEj/dzwdnXksAW2PN2eVcagUC8CPVuXY5vroSbfrmZQAQhJhqxNth6FSVwcW1vHWHmP7e1Z+g8X3eef6k0fHIKrk5Ll6YUWCVA/+j2b51cdY+qgYN65ZXiPAgGhb6iC9a2maplszt+1PtCk1bHpeAkzh4Sat2KZs1neFCd63LljsRPg8M88dt2b3PjRXr7cebpH/X//ve4E7s6O3DfR+u+FQyN9aGrRkVlUyxAbbDDSFfsKl404elSeuUhJSWl3PCQkhNDQUMPtF5JSTQtNLTrizKngry2SqwnFDGrfCEwEFPZTPJPTmn9qSoGUnne4PAPQUGXyXRQKeUmot5X8Dc0t7M2tbB/gVOTIX+2kgt8geDCoi6CuwtYjMUlqpC+HCqzbOmbbqXL83J3MKijxcHFkalIIqw+dpbml570iJUnijfUneX7VMWYPCeP9hSNEcGrnfNydCPZyscteqDuyy6lt1JrXXgrklKqIEeDSpro+ZgI01jDGrYBx8QG8vzmLuibz0sAO5lex5nARd02Ixb8P0lX0hVLpdlgo1aMAtb6+nrNnz1JYWNjhP0srLS0FICio4w5IQUFBlJSUWPwxbe2sWk6ujjWnSb++QCpQFEj1CWd3eQcmeymeydkM7oFyMGUqr9Y35Brz81CPn63tVZCx/3QljVod4we2Wd63swp+A/1zak/L/MdXQ+VpozcNjfRB3aglu8w6wYC8uUIZY+MDUJq5ZfLc1HDKNU2G9A5AXvnJ223yY7/0Syavrz/BNcMjeePGNJwc7H6exXK0jZDxnX3lvptIFeLFyRL7azW19kgR7s4O51rdmaKhGgr3d5wQiJkgf839ncemqyhTN/HlTuO/p5159dcT+Lk7ceelse1vqDpjlZWcSD83AjycOWiHhVImJ+zodDo++ugjvvjiC8rKyjo979gxy/7BbmiQq1GdnTt+knBxcaG+3vyk68OHD/d6XNZUWCu/+dQWnmJfhWkzA0G5GxgAHDzbSHPVPiuOzv7s22eb7zfeOQyXMwc4aqPHN5AkhmSuRx0wlJwDB0y6y759+/Aor2UQcHL/FmqCTf89cm+sp6lFx/LfdhPja8be9m38eKgWpQKcq8+wb18+ACGnthAJHMirRVdkP6/hg8VahgJn9v5CabntWxeFnviCiMxPKYm+iryhizrc7tT6/vG/3zOYHGP58RbWajlb3cCVTnWd/u51dty7RcLDScF/Nx7CS+0LQOLWR/CoOkr2iL9RFTahy8f+9kgtPxzVMCPejRvjmslIN+31bu9MfQ8LOfk1kcc/4kRhJbXBl1h5VJblo6hjz9l69uzdi7KX9SyWes/XSRKrM0pJDXbiyMF0k+/nU7SNgZKOzOYw1OeNZbDnAJoyVqJ0vZTUEGfeXp/JYJcK3EzI7zxS2sSWExXcOtSLE0cOtrstfvezeJfu48CslXJuvBm6e76ivRTsPFnEvn329cHH5AD11Vdf5ZNPPiEhIYEZM2bg6+trxWGd4+oqJwjruwm01djYaLjdHCkpKbi42G8bkiX7N+Hl4siUcZeYXphW/B04ezJ0/AyT8wkvBPv27WPEiBG2efDKMbD9TUakDgFHG1YOl2ZCYzn+I67G34TnwvCcVQbAdkgI8YDhpj+HvgPU/GfXZlp8IhgxwvQimbb+uXMbqVG+TBjT5o9swX/BPZBhY8xIU7Cyffv2yb9TW30Z4KJmgK1ea3q/LYbMTwEFwY5qgo2MJ00n8ZdNa6lx9GXEiJSO1+iloztPA2XcNGW40ULO7n4nZ5/JYPWhIpKHpuGqq4NVx0HpSPyBf8Ggb2HgVKP3+3BLFj8cLeKGkVEsvmaIVRv+9yWT38Pqq2DdDwCoAh3B1q9FM51sOcOqk4cIiR3cq7ZJlnzP33e6kqqGYm4Yn8SIYRGm33HN9+DoRuLUW8DxvFji7HTcDn7HiLSh/DVQzTXvbedQvT/3T+o6dUmSJBZ/sIMQbxf+fN349mkrdRWwag/omhkRG2BWGpQpz9dllSd4Y8NJElNS8XTp20LDxsbGTicNTR7J8uXLmTBhAkuWLLHYwEyhX9ovLS0lOLh9cnVpaSnDhg3r0/H0hcJaLbFBHua9AZdlysv7F8ibdr8QnCTv3FWRJf+/rWTLe0GblX8KPdpNCiA2wAMPZweOFFTDSPMD1JqGZg7mV/HApIHtbyjPtr/8U5B/p4IH23aJX5Lgtxdh80uQdgs0qaHI+Ju6g1LBkEgfq7Wa2n6qjHAfV2J6GGRclRrB93vz5cIUl4Py79D1n8PmV+DbW2DhUoge2+4+X+86wwurjzN7aBgvzL9wglOzbH9LXlpWOHSa3mHPEkLOFUpZq6+nuX49WoSjUmF+4Vb2Zvk1en5wCnKh1N6PoTCdEdGXMFEVxAdbslg4NrrL4O+3E6Xsya3k+atTOuZUH1sBumb5/0uOWfx9MjXSF0mCwwXVjImzn82XTE7eqampYepU459srSkpSf7Df36EXVxcTFFRkeH2C0mhWmveDlIg53EFWn6vXqELQW0q+W0pZ7O8s5V/bPfntuXoAm7+ZgeoSqWCweHePd5Rald2BToJxg08743QznqgthMyWP7DYItG45IEG5+Xg9NhC+Cqt8EvVs5J0xlvBp4a5cuxs7U0anu/oUJbOp3Ejuxyxg0M7HGQODY+gEBPF7lpf/Zmuc9swuVyYOoTCV9fD4XphvOXpRfwl/8dYnJiEK9fn2ZepfWFQl0KO9+D5PlyjnZlrq1HZLaEELmm4oSd5KFKksSvR4oZGx+Aj5sZqUq1xfIugrGXGb89Wu6HSu7vADw2XUVVXTOfbc/t9JI6ncSrazMZ4O/O9cY+9B/+EXxaj1thB8OhrdX79taw3+QAVaVSGQqW+lJCQgJxcXF89913tLSce7P95ptvUCqVXH755X0+JmtqaG6hrE5nXoFUYy3UFIgCqb4WqAKF0rY7Sula5DdCc2dP9bzDzS6SAkgO9+FoYQ0tPagU355VhoujkuED/M4dbNLIgXKAnRVI6QUnyV0yqvP79nElCTY8B7+/CsNvgyvfAqVSLtDTNXf64SI10pemFh3Hz1o2GDh6toaquub2xW1mclAqmDM0jA3HS2jJ+g0GjAYnN/AMglv/B66+8OV8KM1k3dFiHv8+g1Ex/ry3YITd9WnsM1v/LXfcmPwX8IuGqv43g+rt6kSYjysn7aSS/2SJmpwyDZebW73fXccUzyC5T3ZrgJoW5cuUQcF8uCWbmoZmo3dZc7iII4U1PDY9oeNrvLYIcn6HtJvBZ4BV/t4EeLoQ6efGQTtr2G/yb/tDDz3Et99+y9mz5v8x68q7777Lu+++y5o1awBYtmwZ7777Ll9++aXhnD/96U8cPXqUO++8k++//57nn3+eDz74gBtuuIHYWDNnjexcbrkGgFhzWkyVnZS/ihZTfcvJVZ7NsMInWpOdTZeX/eIm9ez+XmFQa373jZQIH+qbW8jpQaX49lPlXBLj334ZqyJb/mqvM6jByfLXvpwtlyRY91fY+jqM/APM+Y8cnIIcpECnM2mprduPWnqP7XObK5hR8WzEVWnheGkrcSg90v4PvU+kHKQqHWn85Epe/PoXUiJ8+Pj2Sy7eVlJVebDnIzlACRwofzjphzOoIC/zW2IXOkv49Yi8zfPlg83YPQog5zdw9YGw1M7PiZ0AZ3aCVq6deWyaiur6Zv67LbfDqdoWHa+ty0QV4slVqUbyYA//DEiQcq38QdlKrQ1To3xJt7MZVJNzUA8fPkx4eDizZs1i+vTpREZGolS2j28VCkWnu0F15o033mj3759++gmAiIgIFixYAMDkyZN5++23efvtt/nnP/+Jv78/999/Pw888IBZj9UfZJfKAapZS/wiQLWdoEG2nUE15J92stzUHe8wOJth9t1SIuT+l4cLahgY7NXN2eeU1jaSWVzL3GHh7W8ob20xZY85qHAux7j4CKhmWP/xJAl+fRZ2vC1vvjDr1fb55X4x8tfK04YtFtsK93El0NOZ9LxqFo7tcHOPbc8qZ2CwJyHevdvdZliUL3O8T0ETHT9cBcRzZNrnRCy9hq+c/oX7tev6vHDDrmx5Wf468Sn5q2+0/KG0vgrcfG01qh5JDPHk8+xyWnSSzVM11h4pJi3K17zXsiRB9ha5nZSyiw9MMRNg94dyK6oBYxgS6cO0pBCW/J7NbeNi2qUULD1QQHaphg8WjjD+nBz+EUKHyhvCBA+C7E1ymzFTdww0UWqkD6sOnqVM3Xhu8xQbM/k7fPvttw3/v3z5cqPn9CRAzczMNOm8adOmMW3aNLOu3R/llLXOoJoVoJ6QE+ftrX/kxSA4CTLXyP0JjSXMW1vOZrmAx7OHu7N4hYGmFFqawcH0PKyBQZ64OCo5XFDN1WZUv+p3IBp//gycvfZA1XPzBe+Ivul7K0nwyzOw6z0YdS/MfKlj8aNPlJxe0slSr0KhIDXS16IzqE1aHbtzKrhuZGSvr6VQKJjve4raYjcavZNo+2o4WljDTf+rZqzb33iv5e8of7gO7lgDHvZTvNFnyk7Bga9g1N3g25qDqP9wUnW63wWoCSFeNGp1nKmoM38rbwsqrKrnUEE1T10xyLw7VuZA9RkY/0jX58VcCijkZf4BYwBYNC2BOW8V88nWHB6bLk8mNWpb+M/6k6RG+hifya3IhoJ9MP0f8r+tuMW2vmH/wfwqpgwyc1bZSkwOUDds2GDNcQitsks1+Lsq8TBnxqAsUy6QsWWro4tV0CCQWuRZ7FDLt/TpUnODvIw04vaeX8MrDJBAXSwvr5rI0UFJUpi32Vuebj9VjrerIykR522pV54NniHtd2WxN31RyS9JsOYp2P0BjHkAZrxgvDOHgxN4R3a51Ds00peNmSWoG7UWmYFMz6uivrml18v7ekkN6WzWDebskVJuHSsHK1mlam79ZBf/396Zx0dVX/3/MzPZ15lAErInLCF7EJRNdhTFIqLgUqpWrVb7tLY+WhWqbX/d1FZr7fJUa1v3pQoCBYtVUIkCArJlgYTskIXsZN8z9/fHyZ1sk2TuzJ25d2bO+/XyNToz93uP38ncOfcsnxPg7YGf3n87tC0pwFsbgbduBL69h1Kr7sSBp+jGd+kjQ88NL++YKM2sQhKHdfIr6aCK6f1rUqWm9y2c2OcXAoSnUe3oskcBUFnUNanheOVgGe65MgHBfp7417EKVDV3jS+blkcZZaTeRI/iiO36fNkd1LSoYGg1QHZFi2ocVItrUKOioiz6h7GNsoZ2RARK/DFpKOL0vlKIqV8lJkpVHqPGCWsbpABqkgKsapRKiwrCmapWSSM1D5U0YOH0KWNTWWru4BcJT6FsxYD5RgebMRqBvT8m53TRD8Z3TkUMcRPKDWXGBEMQgFyZGh8OFTdAqwEWySFD03wBXq3nUeQ/F7tPUw105aVO3P6PowCAt+5dgGiDH0WibnmTSivevoWa6dyFmlxyUBZ+b2SGZHh5h5MxK4yaf4sUrkP95GwtZoYFYHqohGZkgEqqAiMsa0iOXwJUHKXs2iAPXZWItp5+/ONgKTp7+/Hnz4qxcHoIlpibYiUIQO52IHbRUPRcHLFth7Iyf28PzAoLRLaKRp66aUukeilt6EBkoIRmgIF+qt9jB1UZpswCtB7KNEqVZlGaN/5K69cwaaFa0SgVGYy2nn5caOq06P0XGjtReanL/EjBxhL1dvCLhKVQek2sl5UToxH4z8PUDHPlj4A1v55c09gQN2kEFYBsPziHSxqQFhWMYD/rpoeNYLB22pB2NY6fv4RTFy7hW/84io6efrxxz4KRjkPiGmDjP+iG7L3bR/zguzSf/YYixosfHPm8TzApHThho5S/twei9L4oVLCT/1JHL46WNUmPnhqNFEFNWG6Z3njCUgogVB43PZUcEYTr0qfhlYNleGF/ERrae/DoNbPNR09rz1BDVPqmoee8/Oh7b6ffm8yYYORUtkBQQk7PDBOG6rZu3TruaxqNBj4+PoiOjsaqVasQHx8vt21OT2t3H9q7LR8d1tbdj+bOPkQGSijabj5PcjPsoCqDhxdF/pRolCr7Aoica1vaU4ygttVIPlRM0+dVtyDegnTdIbH+dLREUXcr0FGn/ghqWAo91p0ZSrXJgdEIfPgj4OQbwJKHgdU/s+wHUB8PtNcAfV0k0zSKEH8vxIb4yaJt2NHTj1MXmnHvUpluIsqyAP8wXLlwCXDwAG59+Qg8tBq8de8CpEQGjX1/6o1ATzuw+wfAB98BNr0me5PICIxGKt2RUJctKxXHgMKP6G/B1zD2dSeVmgKAxPAARTv5Py2ow4BRwJoUifJSdWeBzgZguoUZq7jFoDrUgyOCCD9anYiP8mrw8helWJ0UhnlxIeaPz9tOvSUpG0Y+H5Zit4xdRrQe7x+vROWlLsSEKD9MYcJv+M6dOy1a5LnnnsP999+PH/3oR7IY5Qp09Q5gwW8+RVefdKHsaCkp/vrBJjN2UJUjLInScY6kt4OK56+08TvnGwJoPYFW6RHUWeEB8NRpkFfVinUZkZO+/1BxA8ICvTFjdFrt9Nv0qPa/4amJ9IMh94/DydfJOV32KOlcWiqAb2qWuQCEmh/SkREdjFMXmm028Vh5E/qNgk36pyYEYTAStQyxU/0xN1aPvOpW/OPOy0dq445m7h00Qeu/W4AvngVWjh9AsZmPHqXpPbd/AExLt995zCEIwKe/BPxDgQUPmH+PIZ4ibE5I4rRAHCpuRP+AER46xydxPzlTg4hgH5M4vcWUSZzY52sAIjIG9VAfNz09e1og1mVEYk92NR5eM841TxCovGPGSsB/VMYpNAko+oQkrGTuOxG/f+WNHep3UCdrjOrq6kJxcTHefvttvPTSS0hKSsI11zhAgsUJ8PHU4q+3z0Vda7ek43y9PDCtV4Kz0FhMj2qV53EHQpOBs7vHjWTZhfoCivBEzrFtHa12UAtVeg2qt4cOieGBOGNBo5TRKOCrkkYsSwwdmc46/GeSU5p1DU0TUjOePvQ9q5W5UarwY1IvkOKcAsOaZc6P66DOidHjw5yLqG/rQWig9SoTh4sb4KXT4vLxoj1SqC+gprzBSNRfNs9FR0+/aRTmhCz8HnDhK5Lfmn/f2B9vOWgsAY6/CghG4LV1wO07gGgHzr0vPUBOzdrfAV7jZCb0caQeYjQOaeM6CYlhgegdMKK8sRMzwyTWgNpIV+8Aviiqx62Xx0ifhFaaBUyZCQRL6LWJXwoc+zs1tHoOZUZ/dUMqbl8Qi9TIcZzkyq/pxnPFT8a+ZscR2ymRQXj//kXIjFFHM+KEDqolTU8zZ87E6tWrcdNNN+Gdd95hB3UQjUaDlbOtk/45cUKCs9BYDPhNoa5BRhnCkgAI1EDjqK5asaRATDvbQlCEVRFUgOpQPzlbA0EQJrzgn6ttQ2NHLxbNGIzACQKQ9TvqUk7ZANz0d+dQoQhLsUo3dlwG+oHzh4C0jdKcU2BYs0z5uG/JGCYdszrZ+s7cQ8WNmBunh6+XDGL5pSMjUZF6iTd1K5+k6ObBPwDX/MZ2e0aT9TtA5wXc9SGVE7xxA7D5PdtqvS1FjJ4Gx0yszmGIp3rotovSHCYVIHbyF9W2OdxB/aKoHt19RunTowb66Huacau04+KX0s1U5bERWtV6Py8smKjZMHcb4OEDJH1j7GumEdv5sjuoADA/QT2+hCy3Xp6enli7di3y8xWcqOOuNJZQow6jHKEKdPLX59OPqEGGSWpWRlAB6uS/1NmH6paJMwWHSxoBgBqkBAHY/3NyTjO/CWz8p3M4pwA5qJfK5esmrz5FI1QtrWsbjn8o4Ok3YS1iWlTQoHRMs9UmNnX04uzF1rHatdZSlkUOlhgBlkpoIpC5mSJTLVXy2CTSUATkvg9c8R0g+nLSXw2KIKmrYgdILRb8h8Tdlz8+sa6yuHdOWIc6MywAGg0UaZT6+EwNgn09pTthVSepvETqQJS4RdTIWval5ccM9ANndtJAEB8z9djiiG07TZRSE7LlBqZOnYrOTsu6eRkZaSyitAOjHFNmUB2nIx3UugK6UMnRKBIYYVWTFACkio1SVROn+Q8XNyB+ih+igryBvY8Ch/5I4ztv+Kt9m13kJjwFgCBfU1zZAXqMXyr9WI0G0MdOGEH18/JAYnggsm2Qmvpq8OZisTn1BakM9FPTiC3SaACw/DFKwYtTluQi67cUubryIfrvoEjgrr10jX33NqBgr7znG45xAPj8N3SuzG9O/F7xxtQJO/l9vXSIMfihsM6xjVJ9A0Z8ml+H1Ulh8JRa+1qWBUAj3UH1CQYi5tDfvKWUf0HDU9I2mX/d04c+fyWkDR2MbA7qhQsXoNfr5VqOsYTuVqrl4vpTZdF5ki6eI+9o6wuGUj22EhRB0YHuVsmHJk+jCN2ZCRzU/gEjjpY14coZBurC/vrvpPP5jeedrn5uqJNfpjrU0iwgPN36WkpD/KR6mJnRemRXNlstHXOopAEB3h7IlNpUYo6Lp62PGA/HEAdcfjdw8k35ZL/qz5Hu5Pz7gIDQoecDQoG79tC4yfdup/fYg7wP6O9q5ROT37QFRwPQOKUWKkBpfkdroX5d1oSWrj7p6X2AvqfT0q0rpUtYSjWlvRYG8HI/ALyDJq7JD0tmB9VS6urqsH37dlx++eVyLMdYijgekiOoyhOa5LgLRncr0FIhn9RRoCg1JT3N7+ulw8ywAORVj+/cZle2oLunG99v+i117C/fYpnOpxoxxAMevvI4qH1dJCdki7OmH9RCncD5zIzRo7mzDxVNXVad4nBxAxYkhMjTcV16gB5tjaACwNIfU5nLgadtXwsADjxDTUmLzShj+BqAO3fR2MoP7iXHWE4G+ih6Oi19rKyQOTy8afSuE0ZQAZKaKq3vQG+/0WHn/PhMDXw8tVieGDr5m4fT20k1pNZ+T+OXkhRkxdHJ39vXDeTvBpLWjWiqGkNYMo07dXFN4Alv03bt2jXhwV1dXSgpKcHevXvR0dGBe++9V07bmMloZAdVNYQlA2d2UG3ieJ23ciFKi4XKVCAfNCjW31o9bjf4RKRFBuNgccO4rx8trMKLni8gsvIkcNUvgCUPWWmoCtDq6MZADomfC0eAgR7bnDVDPNDbBnRdGje6I8rpnK5sRuwUadIxVc1dKG/sxB2L4q23cThlWTQCUo7u+8BwYOEDwMEXgCX/C4SnWr9W7Vmq+1vyv4D/OM0r3oHAt7YD732LMgF9XcCC71p/zuGcepOczc3bLM8qOLUWaiD6jQLKGztMTVP2RBAEfHK2FktnhUpv9LvwFTWkJayw7uSxC0mervxLko2aiOJ9lGFIHye9L6LkiG0HMqGDumXLlgk7c8WUUUREBJ5++mmkpbnuRqmShiIAGpKoYZRFTLfXnwOi5tr3XOIUEbk6OE3TpKyvQ91xqgp1rd0ICxp119/biSXHH0SG7iRw3XOUPnV2wlKAon22r1OWRVPI4hZbv4ZJaqpsXAd19rRAeHtokVPRjPWZk+vVDudw8TjDFayhrxu4cBS4QsZAxuIfAl+/QlOXvvmO9etkPQN4BYyd2jQaLz/gm/8Ctt1NWql9HeTU2oBmoAf48ndAzEJg1tWWH2iIB0o+t+ncSjErnLr3C2vbHOKg5la14GJLNx5ZI/0GnL6nntTwZA3egfSbYEkdau52an6c7KZVvPbXF7ivg/r00xOnTry9vREdHY3U1FTodDLIjzDSaCymGb0TpQIYxxA2rJPf3g5qXQE1cogyQ7Ziw7hTAEgfbJQ6U9060kHtbsXA27cgtfsU9iQ8getdwTkFyEE9/TbQ0WBbJLA0C4i6HPC2QWpn+Fz2KPNanZ46LVIjg6waeXq4pBFT/L2QGCaDE1FxlCLGttafDscvBLjyQeCzX9NIyWgrysxq8oCz/6ZBCZbUGHp4A7e8Duy8H9j//ygFvPInVpeshJb/m8prNv5D2hr6OPrOjtLYdAZmhAZA68BO/o/P1ECn1WB1khXSj2VfANFX2JYZi18KHP4TTUMb7/ve0wYU/he47I7Ja5CnzLTP0BCVMeEu3HjjjY6yg7GGxmJO76sFQwKg87bbjOQR1OdTB79WpptCLz/qNm21TmpKHE2ZW9WCleIPQGcT8NZGaC7m4Id9P8DGRXfJY6saCB/WKCW1q1ekq5kahpY9apstesvkhjJj9PjXsQpJ03sEQcCh4gYsmjEFWq0M9cJyRIzNseB7wJGXSD/027ulH3/gaWpKWfR9y4/ReZJ2r6cvKQn0dVpXV93dioiid4AZq4D4JdKOFW9OWiqoSdOJ8PHUIW6Kv8MapT45U4v58SEw+EuUs+u6BFSfBlZssc2A+CXAweeBiiPAzKvMv6dgL9DfPXl6H6CbpCkzXd5BdbIWWsaEIAxqoLKDqgp0HuQ0yiU/NBF1BfILNAdGWq2FGuDtgelT/YekptrrgdevB2rzsGPW0/gvFmN+vHrEn21G7OS3ZaJU+UGSSbK1Wcg7APCbOmmzTGa0Hl19AyiqszxiVVLfjrq2HtKulYPSLIryesuc0vUOAJY+Qg6w2IRlKRezgYIPyTk1N/N+IrQ64Po/A/PvJzH2D/+XJjtJ4ciL8OhrBVb9VNpxwLDyjnLpx6qAxPAAFDrAQS2tb0dRXTuuSbViUEX5QQCC7d/T2IVUJjCRHmruNiA4Foieb9maYUmOCYgoiBMJEDIjaK+l5ggW6VcPYUnU+GJPupoprSeXxJRI4DSrHVSA6lBPnr9E6cbXvkFj+ja/hzc+8sJlsVr4e7vQpSYgHPANAepsaJQq+4JE9qOvsN0eQ9zkUlMxegDAg++eQoifZVGkps5eAJBHoL+7hQTol/7Y9rXMcfk95CR++ityJiyNZB54hrIHC79n3Xm1WmDtbykLcfAPpMrgI0GO6+JpXJq2FAZryoL0dnRQD75AKgEZN8u/9iCJ4YHYn1+Hnv4BeHvYr0Twk7O1AICrrZWX8vQft3zGYrwG1xivDrWjESj9nOT3LG2SU2LEtoPhCKqz0lhMj6yBqh5Ckyjd1mPHqICotSrHiNPhBEVaneIHgLTIIFQ1d6G19CjQcA5Y/ye0RCxFblULFss1gUgtaDS0/7ak18qygNhF8kzQMsRP6qTET/HDrZfHIDTAGzqtxqJ/QgO8ccfCOMmd/2YpP0QRYznrT4fj6UPTl6qO04x6S6g6CZzbCyx6UJpTORqNBlj9c+Da31INq1Zn+T+xi1CVbGVtdkA41aLL7aAKAqWjP/2F9IiwBJIjgjBgFHCuxr5R1GNlTZgZFoAoqSN1Afqexi2W53uasHRwcpyZ/9+zuwBjv2XpfZHhI7ZdFBcKa7gZJgeVU/yqwdRZec66Zg1LEJ0iuTRQRQIjKCpvHLCqtjVtsFGqvvAYggAgYRmOlDVCECBfilhNhKcAp9+hH3CpwwbaauhGY85meWzRx1GTzwSfnUajwW83ZchzPmsoyyL9WDkixuMxZzNNKPvs10DitZN/LgeeobT+gvttP7dGQ5JXCx+QfGjPiRPWnVOrpUlicktNtdVQxLu7hfQ/YxfKu/4govxZdkUzMqL1djmHIAjIrmgeqo2XQms1OX9z75THmPilwBfPAue/AhJHifDnfQBMnU0SbJZiGrFdAERkymOjyuAIqrPSWExNOcHRSlvCiJg6+WWaMmSO+gJKDQfHyrtuUATp6rXXWXV46mCjVH/laYrsBE7D4eIG+HrqMGcwvexShKXQ9K2WCunHln1Bj3KI1QMUQTX2A60yz6WXk9IscnQmmi9vKzpP6qavO0OaxBNReRwo+phkpczNO3cWLIieS2b49St3m7xrDyNK74upAV42jeGdjKrmLjR29Fo3Bc30PbWyEXI0MfNpsET5FyOfb6kEzh+i6KmUJjtxxLYL16Gyg+qsNBQP/oGyvJdq0McPThmyY6NUXT6J6cs9ItQ0Tco6qSm9nxeiDb4IuHTGdDd/qKQRVySEwMvDBS8ztow8Lc0CfPQ0OlMOTM0yKhVtb6ulH1F7pfeHk3oTRaE+/w1NZxqPA09THfF8mYT2lUI/WH9s5Rhbs4hlRPFLgTO7gIF++dYehkajoTG8Fc12WR8AsivI+c205ia5NIv+RsLT5THGczCDMLpRKm/wZipto7T1xBHbLtzJ74K/HG5CYzHXn6oNrRYITbTvHW19gXwTpIYTONhAYKVYPwBcNs0b03rPAxGZqG3tRnFdO66cIYPAuxoRo+VSJ0oJAqW7E5bKd5Nhz2YZOZA7YjwRWi2w6kkaA3n6bfPvqTgGFO8HrvyR/IoCjsYQT5OHui7Jt2ZdPilDLHgA6GwAyg7It/YoMqL1KK5vR3uPfZzgnMpmeOm0SJomMUpuj+8pQE5/TQ41u4rkbQci51r3e+7IEdsKwA6qMzLQT5NjuP5UfYQm2y+C2tlEdaJy158C1CQFUN2VlSwLroUORnROScPhEnECkQvWnwKUFg6Olf7j0FRKZQFyOmvB0STardaxl2UHqAnJUXVyiddSpOrAb0lVYjSfP0UOmCsMjhCj53J+9vWDMnazrga8g4HcD+RbexSZMcEQBCDXTmn+0xXNSI4Mkp7FaSyhkhm5b6oSllKz4IWv6L8bikjqTEpz1HDCkumz7+2Qz0YVwQ6qM9J8nmrO2EFVH2FJlCYffocsF6YGKZk7+AEar6fR2SQ1leFBP5IFmuk4VNwIvZ8nUiKcuL5vMsKSpaf4y7LocfoK+ezQeQLBUeqMoAoCUPoFRY4cVY6k0QCrf0bfw+P/HPna+a9IzmfJQ7ZNBlILpkli5fKsJwjU5BmaRPXCydcD+XtIysgOiM1R1kw5m4wBo4C8qhYr608P0KOc31OAJsfpvIfS/LnbAWioNMUaho/YdkHYQXVGTB38rIGqOkKHdfLLjVg6ILcGKkDOQ+A0m6SmYruL0CQE4GSzPw4XN2DRdJkmEKmV8BTq8u3vtfyY0iyq95X75tIQr84a1EvlQMsF+X/oJyNhGZ3zy+dHyvoceArwDwMu/45j7bEXepnrj1urqGRAzNKkbyK97aJP5Fl/FCH+XogN8UOOHRzUkvp2dPQOINMahYDSLCAoGgiZLq9Rnj7ULFX+Bd0M5G2nKVNBEdatZ1KOccCAGAVgB9UZYYkp9WLPTv66AsAr0H7KDTaK9fs25KJIOwMf5taguqUbi101vS8SlkKZDPH7OBlGI9VjTpcgJG8p+jh1RlDFiLEj6k9Hs+pnVEN55CX67/KDtP9L/peE9V0BnyBq5JHrsx+dpUlYRg597nZ51jdDRnSwqZlJTsTmq8wYiRFUoxEo/9I+31OA9rQmj74bjcXWp/eBwRHbXvZVjlEQdlCdkcZi6gL2c6Hxka5CcAxNHrHHHW19AXXw2+OiCZAWqrUOan8PUJePpqAknB78YXDZBikRqZ38tXlAV5N9nDVDPNBRB/R2yr+2LZRm0d+VErPio+cBSeuAw3+i+u3PnwICpgGX3+14W+yJIU6+GtS6UVkarQ5IvREo/BjobpXnHKOYE6NHVXMX6tt6ZF03u7J5cAxzgLQDa3Op6cxeN1XxSwEIwN7HSCYqeb31a+k8SD/VESO2FYAdVGeksZiip/ZyVBjr0WrJibRHZ2Vdvn0apERsmSZVlw8Y+2CcRo0wEcE+SJjqAjV+EzE1EdB6WO6gmupP7eSgAjRiVi2IEWMpo0flZuUTlOJ//07Smlz6sOuNhRSlpuSgvoB0jIcHP9I3AQM9QMF/5DnHKMQ6VLnT/DmVLciIDpZeZlQqRv1l0j8dTdQ8kiNsOAfMXG17oCksiVP8jIpoKFYmIsFYRliy/BeM9npKV9pDYkokMALoabGuI/RiNgAgeDpNClo8Yyo0rn4D5eFFN4q1FjqopVlUNy4qJsiJ3M0yclB3lv5mHaF/Oh7hKUD6zZSyDYwE5n5bOVvshSGebkyMA7avVZc/tsY9+gqaWGUn0f60qCBoNZBVsL+nfwD5F1utm1BVlkVRSWvrQifDwwuIXUD/nn6z7es5YsS2QrCD6mz0tFN3KmugqpfwVJKDskGyaQxig1SYnR1UwDot1IvZgHcQklLS4eelw9q0afLaplbCUmhy0WQM9AHnD9vPWdPbQW7IVpSsPx3Oyq1UdrNyKzWpuBqGOMDYZ1P9OACKeNefG3uN0WiAtE1A6QGgo8G2c5jBz8sDieGBsgr2519sQ9+AgDlS609ztwPFn44dRSo3SetIOWX2WtvXCrNjY67CsIPqbDSV0iM3SKmX+CX0KAqUy4FYY2RPB1WMGFjjWF/MBqZlYGqgL3J+vgZXpYTLa5taCUuh6NVk0YuqE0Bfh/2cNf+p5ISpKYJamkXXqeAoZe0ImQ48VirfTHW1IVf0vOUC/Y2aUwlJ30SjkM/stO0c45AZrUdOZTMEmSZiic6upAhqwV5gx3eBuCupNMSeXHEv8HC+PFJn4uflgoL97KA6G9zBr37C0wFfg7wOan0+iWYH2intBAwbdyoxEjPQTw1Ag0LsHjo3uqyEi41Sk5R0lGYB0AzdvMiNRkORNLVITQ30Uc2n0tFTEVeMnIrIJTVlugk2o7McnkrlRXn2Ee3PiAnGpc4+VDTJo7eaXdGM0EBvRARb+LmXHgC23UXXsG++a/86ZY2G9IvlwBAPePiwg8qoANFBDeEUv2rRaqlTszRLvhnZdQVUDG/Puk5rI6gNhUB/t+MmBakJSzv5y7Jof+ypvKEmqamqk0Bvu7L1p+5CcAyg0dr+2Zt0lmebfz19I01Aaq6w7TxmyJRZsD+7shmZ0cGW1cFXHAPe3Uxlc7d/QNJdzoRWR5+ZPUdsKwQ7qM5GYzEJCLuKjp+rMn050Fo5VJJhC4JAFx97CPQPxzsQ8AqQHkEdbJBySwdVH0ep9Ykc1N4O+hG0t7NmiKcaVLluimyhTIwYL1XaEtfHwwsIirK9/riugLIovnrzr6cN6nXaIYo6e1ogvD20stShtnb3oaS+wzKB/ppc4O1NQGA4cMdO55VutOeIbQVhB9XZaCzmBilnIGEFPZYesH2t9jrS5bPHiNPRWKOFejEb8PRzT2UJrZYi27UTNEpd+IqaWOyd7jbEUdSys9G+57GE0ixgWrrz/uA7G4Z4eSKoE8nYhSTQqM48+UX7PXVapEYGyRJBzRtUA8iI0U/8xoYi4M0b6ab8zn/ToBJnxZ4jthWEHVRnQhCGNFAZdTNlBkU1xE5mWxCjc/bUQBUJipCuhXoxm5wRR81aVxthKRPXf5VmkSB37EL72mFqllG2DlXT3w1UOiBizAxhqxaqcQCoL5xcxi59E0Ud7dAxnhmjR15VK/oHjDatc3rQyc2MnqCDv/kC8MYN9Jt6579JRsuZseeIbQVhB9WZ6GwEulvYQXUGNBqKmJV9SfIttiBqqtpTA1UkMFJaBNVoBGpy3DO9LxKWQnqf7XXmXy/LovnbcnTsToSpWabMvueZhIBLecBA71AWgbE/hnigvQbos7LJ6FI50N81+U1w6o1U72qH0aeZ0Xp09Q2gqK7dpnVyKloQN8UPej8v829oqwFeX0/Zhjt3uUbmR/zcXKwOlR1UZ6KhiB5d4QvlDkxfTqMta3NtW6cun1QBAsLksWsiggZT/JY61U0ldKF3Zwc1fIJGqc4m4GKOY7rZDerQQg1qOEkR47hFitrhVpg+eysnidVP0ME/nMBpVFect132WufMwZS8rROlqEFKb/7FziZK67fXAd/aTpkfVyA4drAWnh1URilMElNcg+oUiE5JqY1p/voCip46YjJTYARg7Le8jtGdG6RExB91cxOlyr8EIDgm3e3lT+LfCnfyB9afoulD9o4YM0OYoufl1h1fN0kH/3DSN1HzZ/Up6841DvFT/BDk44HTFdZPlKpr7cbFlm5kmEvv97QBb20EGkuAb75DWQ1XwZ4jthWEHVRnorGYIhPBTl4v4y4ERdC8dlvqUAVhSGLKEZimSVkoNXXxNKDzsr/CgJoJCAP8ppqfKFWaRU0YUfMcY4shXtka1K5L8Gsp5PpTR2Nr/XF9AclVeQdO/t7k6+l3SOZufo1Gg8wYvU0RVHFc6pzRDVJ9XcA7t9EN9c2vAdNXWH0O1WKPEdsKww6qM9FYTJ2UOg+lLWEsJWE5jbjs77Xu+LaLQE+LYzr4gaE58ZY2Sl3MJhFvuUSnnZXwcRqlyrKAuMWO2x+ltVDLD0IDQT0C/e5CQBjg4Wt9eUddgeU3mb4GYNbV5KAaB6w73zhkRAejoKYN3X3WrZtT2QydVoPUyGER1P5e4P07aXDEjX8Dkq6TyVqVEZpEI7Y7m5S2RDbYQXUmGouBKVx/6lRMXw70dQJVx6073pR6U2EEVRDIQXXn9L5IWAr9yA+v3W2pou+sI501QzzQUknTvRxNXzdw7GUM6HwcFzFmCNMksXLpxw7007ANKVma9E1083z+sPTzTUBmtB4DRgFnqlutOv50RTMSwwPh6zVMUeTA00DRJ8C6PwAZN8tkqQoRx2C7UBSVHVRnwThAdT9cf+pcxC+hrldr61BFBzXMAR38wGAjloY6XSej+TypSrCDSg5qXwfQXD70nDjq1pHpbkMczUxvrXLcOQEaRvDOLUDZl6hI/T6JxzOOxVqpqUtlwECPtCxN4lpqypFZE1VslLJGsF8QBORUtmBOzLDoqXEAyH4XmH0dcPnd8hipVsQgxmRT7ZwIdlCdhZYKkm5hiSnnwtdADpy1daj1+VTf6D9VXrvGQ+dJTqol4065QWqI8FR6HJ7mL8sC/KYAYamOs8NUi1juuHN2twBv3kQNYTe+hMa4bzju3MwQoli/1O56a7I0Xn6UKj/7b+vLl8wQHuSDaUE+Vgn2n2/sREtXHzKGd/CfP0SR3vRNstmoWoKjAa9Al5ooxQ6qs2Dq4GcH1elIWA5Ufg30WKHvV1fguOipiKXTpC5mA1oPxzpgakXsfhY7+QWBouYJy6jD1lGI3dyOkprqbCJNyaoT1HySeZtjzsuMxRAH9LbR1DkpmHSWLejgH07aJjpX6efSjpuEzJhg5FRK7+TPNgn064eezN1Okd7EtfIYp2Y0GirT4BQ/43AaBh1U1kB1PqYvJ+mmC0ekHScINBnE0R3yQZGWNUldzCb5K08f+9ukdrwDyTkU02uNxVTH6+hmoaAoQKNzTAS1rRZ47RsUgbvtHSDlBvufkxkfU/Rc4qCGunz625UqCzZjFeCjB3K3STtuEjKi9Shr6EBLZ5+k47IrWuDjqUVieAA90d9LEd6k6yji6w6EJrmU1BQ7qM5CYzHgHUQ6h4xzEbOQpJjKDkg7rqWSIiIOj6BOm7xJShCA6tOc3h9OWMqQg1p6gB4dLbek8wD0MfaXmmqpBF67js7zrW1A4hr7no+ZHJMWqsTPvt7KLI2HF5C6ASjYC/R2Sj9+HESJqJyqZknHZVc2Iy0yGB66Qbem5DOguxlId+HGqNGEJdNUu44GpS2RBXZQnYXGYmqQcoRYOyMvXn5A9HzpjVKm6S6OdlAjKXXX1z3+e9ou0oWQHdQhwlNo2lt/D9WfBscChgTH22FvqammMuCVtTSN546drHmqFsRpUlI++4E++pu1NkuTtomaAws/su54c0tGUZOTlEapvgEjzlS3jKw/zd1GPQDTV8pmm+oxNUq5RhTVKRzUo0ePYvbs2Wb/KSkpUdo8x9BYwvWnzsz05UBNrjSNOjEa5/AUvyg1NUGanxukxhKWQh309QVA2ZdUf6rEDaUh3n41qPWFwKtrKbL/7d1A7AL7nIeRjncgNeVJ+ewbSwBjn/U6y3GLqWY9Vz7R/mBfT0wP9TeJ7ltCYW0buvuMyBQ7+Hs7gHN7qezEnRQlxGCGizioTqX4/u1vfxupqSMbMsLDwxWyxoH0dVEX/5TblbaEsZaE5cDnvyHpodQNlh1TVwAEhAN+IXY1bQyBwxzUkHEigBezAWiAaWkOM0v1iD/yOe9TalGpyKIhDuiop6Y87wD51q3JBd7YQLJpd+2liDGjLqRGz+tFGTsrb4K1OiD1JuDYy5R18TVYt84oMqP1OFRseZpabKoyNUid+4j0p9PcoHt/OIERgE/w0Ofq5DiVgzp//nxcddVVSpvheJpKAQisgerMRM2lkZdlWZY7qPX5yowQFR3UiaSmqk/TGFeetz7ElJk0AvLkG/TfCcuUsUNslmm+IJ8TWXkCeOtG+hu+czcwlbM5qsQQD1Sfsvz9dQV0wzE10fpzpm8CjvwfkL8HmHun9esMIzM6GDtPVaGmpRvTgidvwsyuaEawryfipgw2Q+V9QKVKcYtlscdp0GiocdVFpKacIsU/nPb2dvT3KzAlRUlYYsr50XkCcVdaXodqNFIHv6PrT4FhKf4JxPp5gtRYPLxIZaOnlW4sAqcpY4c+nh7lqkMtPwS8cQNFx+7+iJ1TNWOIo2ybpSNI6/PJqfX0tf6ckZcBIdNJ0kkmMgYbpU5bWIeaXdmCjOhgaDQaKqMq2gek3UQRXncjLIk+V6l6uCrEqRzURx99FPPmzUNmZibuuecenDt3TmmTHIPJQeUIqlMzfTnQVEId0JPRcoFSVEo4qD56mus9Xg1qex11+bODOhYxza/kLHpTBFWGOtTiT4G3NtJNy90fDTXiMOrEEE+SdpZOEqsroIibLWg0lEov/9KyCXQWkBIRBA+tBjkWCPZ39Q6gsLbN1P2P/D1UV5u2URZbnI7QZCq3aK9T2hKbcQoH1dPTE9dccw2eeOIJ/PWvf8X3v/995OTkYPPmzSgrk6j55ow0FFPa1TtQaUsYWxCdFkuiqGKKxtYfD2vQaMghGS/FfzGHHtlBHYuYUleys90vhFLxtkZQy74A3r2NMjd37SV9XEbd6CV08vf3UPDD2vrT4aRvAgQjkLfD9rUA+HjqkBQRaNFEqTPVLRgwCkMd/HnbKaIbeZkstjgd4ufpAiNPnaIGde7cuZg7d67pv1evXo1Vq1Zh48aN+Mtf/oLf//73ktbLy8uT20TZOXHihOnfZ184DcErHIXDnmOGOOEs+yIYkeGlR+vxHSg3TvyjEF60D9EATld3Y6Be/v+/yfYsURMIXCwy+zc3rWgvogCcqjXC2OQke28DUv6+vAemI2raUpS3BMOo4N9lsk8YesuzUWKDDTOP/Aq+nnqcnfNrDJy7AOCCxcc6zXdSJci1X14d7UgHUH76CzQ2TVwf7tNailRhAKUdPrgkw/lnG1Lg+cULOOMxF4LW0+b1Ir37cLC8DV8fPw7tKDWM4fv1YWEHAEDTdB7Zh7KRUfYlLibegYsnT9psgzPi0d2HTAAVJ/ehrjkIgPN+H53CQTVHUlISFi1ahCNHJE7nAZCWlgZvb287WCUPJ06cwLx584ae2F8DpKwf+RwDwMxeqZ2yVZhy/jCmzJ07sQTR+b8BgZGYs1D+SJxFe1Y2C6g6bv59xS8AIdNxmR1sUxvS/77mAStuhDy9zDZQmAy/S2XWfzc6m4D/nAQW/QBzFq2QdKjTfScVRtb9GsgAPtciPhiIn2zNXMo+Tp9/nTxqHEG/At7eiLmas8C8e2xe7ipjBT4pzUFIXBJmhA6pUYzer9cLTyEyuA9XLZkPHHkRgIDIqx9EZKgNjV/OjCAAB0MQ492OmHnzVP997OnpGTdo6BQp/vGIiIhAS4v0mb1ORWcT0NXEDVKuwvTlQHsN0FA48fvq8uVJvVlLUASNOzVXaM8NUurHEE9pXmsbJQo+pFrG1BvltIqxNzpPIDjashR/fQGNxZVrfPbM1TSQ5IvfU/mAjWQO1pROJtifXdk8lN7P3QZMSwfc1TkFKPARljw06MWJcWoHtaKiAgaD4rEK+2JqkJLpIsIoiyV1qMYBcmCtFc+Wg8BIYKCHiu2H03WJmm/YQVU3hjhqsrN25GHeDqrj48/Z+dDHWTbutC6fPmMPmbKJGg2wcivQWjkktWYDM8MC4OelM2mcmqO5sxfnGzvJmW0qBapOuJ/2qTlCk6iPwck7+Z3CQW1qGjt95/jx4zh69CiWLFmigEUOhCWmXIuQBEAfS3qo43GpHOjvVkYDVSRoHC1UbpByDqQ0y4ymo2FwoMSNPFrZGRGj55NRXyB/lmb6SiB2EfDl7ycelWwBOq0GaVHBE0pNZZsE+oNJ+xRw3+794YQlAz0tE08DdAKcogb1oYcegq+vLy677DIYDAYUFRXhvffeg8FgwIMPPqi0efalsZjSMCzv4jokLAfyd1Ok1JxOn5iaUUJiSmT4NKnh9WniiNNp7KCqmuFSUzFXSDs2fzeNbOX0vnNiiAM66oDeTsDLz/x7+rop4ph6k7zn1miAFVuBN9YDJ18HFtxv03JzYvR47XA5evuN8PIYG0/LrmgmlauoIODj7eQc62NsOqdLEDq8k995s8xOEUG96qqr0NTUhFdffRW//OUv8fHHH2PdunXYvn07IiNdXPqksZh+bHS2d0UyKmH6CqC7ZcjZG40oDxI622EmjWG4gzqci9lAcAzgP8XxNjGWo4+lx0tWyPCd2UklReE8xtYpEQc1TKSD21BIslD2uAlOWAbELRmMonbZtFRGdDB6+404V9Nm9vWcymZMn+qPoJZCurHn6Ckhfq5OPlHKKSKod955J+68U54Rak5HQzGn910NcQRmWRaNQB1NXQE5gUrq3prGnZpxUDm9r368/ICAcMtqEYfTXgeUHwSW/pjT+86KGD2/dH58B9SeWRqxFvW1bwDHXwUW/Y/VS2UONj9lVzYjPTp4xGuCIOB0RQuWJU4l7VONjqP+Iv5TAf9QmigVvUhpa6zGKSKobovRSJOH5OqyZNRBQBgJ8I/XKFVfoGz9KUBjO/2m0sQokZ42iuizg+oc6OOk16Ce/TdF1viH3nkxWFB/XJcPaD2AEDtNJ4xfQjfiB/9ApQZWEm3wRYi/l9lO/ost3Who70Fm1GD96YyV5JgxhNgo5cSwg6pmWquoWYZHnLoe05cDF46MlWMZ6B/s4Few/lQkMGJkBLUmD4DADqqzYIiXPu70zC76YQtXUEGCsQ3/UMDTb+LPvr6AMnMeXvazY8VPqBb2+D+tXkKj0SAzOthsJ7/otC7yLgWaL3D3/mhEqSkn7uRnB1XNcAe/65KwHOjvAiqOjXz+Uhkw0KsOBzUoYmQN6sXT9BgxRwlrGKkY4oCWSmCgz7L3t9UA5w9x9NTZ0Wgmj57X5ds/SxO3iLr6D74A9HZYvUxGtB6FdW1o7+kf8Xx2ZQs8dRrMqPkI8PABkr5ho8EuRmgS0NsOr65apS2xGnZQ1Qw7qK5L/JWARjtWbqounx6VTvEDFEEd4aBmAwHTgMBw5WxiLMcQT+n6lkrL3n/23wAEdlBdAUP8+PXHvZ3kvDpCZ3nlT4DOBuDY361eYk6MHoIA5FWNjKJmVzQjdZo/dPm7gFlrAJ8gG411MQaDHD5t5craYQPsoKqZxmLA03+oYYVxHXyCgci5Y+tQTQ6qgh38IkGRQEc90N9L/80NUs6FVC3UMzuBsFR1/O0xtmGIG3+SWMM5AIJjJtXFzAdmXgUc+iPVsFtBxmBzVE5ls+k5o1FAblULbtCX0DUq/WY5rHUtwpIBjRYBl84qbYnVsIOqZhqLqf6Uu2ldk+nLafJJd+vQc/X55Fh4+Stnl0jgNHpsr6GoS30BO6jOxHAt1MlorQYufMXRU1fBEA/0dQCdjWNfExtnQh1URrTiJzSu+9jLVh0+JcAb0QZfZFcMRVBLG9rR3tOPFb1ZgHcQRVCZkfgagPglMFR/7rR1qOygqplGlphyaRKWkyD6+cNDz9UVqKP+FKBxpwDVJtadpXQxO6jOQ1AkoPW0TGrqzC56ZAfVNTBFz8189vX5gM6Lxpw6guh5wKxrgEN/GnkzLoHMaD2yh0VQsyta4I1exNZ+CiStAzx9ZDLWxUi/GT4dVUD1KaUtsQp2UNVKfw91JrKD6rrELKDifrEOdaCPbkrU4qAOH3dqapBiB9Vp0Opoqo4lKf4zO4Fp6cBUvt64BCYtVDODGuoKaBCDzoEy6Cu2AN3NwNGXrDo8MyYYlZe60NhOqifZlc24xisXut42IJ3F+ccl+XoYNR5DY2CdDHZQ1UpTGUWsWAPVdfH0ISdVrENtLAGMfY5LvU2GKYJ6kepPfUOA4GhlbWKkoY+bPMXfXAFUHuPoqSshThIz99nX5Tum/nQ4UXOB2dcBX/0F6GqWfLgo2C/KTWVXtuCbfsdIqzlhhWxmuhy+BrSGzScH1TigtDWSYQdVrZg6+FkD1aWZvhyoOwO011PqDXD8j8d4+IVQKrC1eqhBiuuhnQvDJHJDAHB2Fz2yg+o6eAeQHuroz76nHWi5oEyWZsUWGvF85EXJh6ZFBUOrAU5XNKPPKOBCdS0u7xm8qXJkJNgJaYpaRUGG4aVkTgI7qGpFdFDtNemDUQcJK+ixLIsiGxotMDVRSYuG0GioUar5PFB7ltP7zoghnhplJuqgPrOTtG0dVZPIOAZ93Nga1Ppz9KhEliYik+pFj/wV6Lok6VB/bw/MCgtETmUzzjf3Y4VwDJ5CD5DO4vyT0RK+iAY35G1X2hTJsIOqVhqL6Q7YV6+0JYw9iZwDeAcDZV+Qg2qIBzx9lbZqiMBIss3Yxw6qMzJRswxAEbaqExw9dUXMRc9NWRqFyohWbAV6WoGv/k/yoRnRwciubEFRUy/W6w6jPzAKiJ5vByNdC6OHLw0xOPvvIclAJ4EdVLXSWEyF7Ixro9XR3OqyLJJxcoR4thSCIoaiHZFzFDWFsYLJpKa4e991McQPThIbNoGpLp8aM8W/C0czLQ1IuQE48hLQ2STp0MwYPZo6enHmQh2W6vKgS98EaNmFsYi0TXQdL/lMaUskwZ+uWhE1UBnXZ/pyinQ0FKljgtRwxEYp72DAkKCsLYx0TN3c5eZfP7MTiJpH0TbGtdDHkYxd67BJYvUF1Hir1Sln1/ItQG87cPjPkg4TG6WmNx+CBwagyWBxfouZsQrw0Ttdmp8dVBWi62un6RgsMeUeJCwf/BdBPRJTIqJYf0QGN0g5I74GEjI3l+JvLCH5MI6euiamm5Nhn31dvvIqIeEp9Dd39G9Ah5lBAuMwe1ogvDy0WK87jEbfBCA8zY5GuhgeXhS5LthLQ1ecBHZQVYh3x+AdLzuo7kHobCBgcL692iKoQYMRVK4/dU40msFmmfKxr4nd+ykbHGgQ4zDEqLj42Xe3AK1V6rgJXv440NcJHP6jxYd4eWixLKwHC7QFaJm5nm+YpZJ+M00XK/xIaUsshvUZVIhPewX9C2ugugcaDUVR8z5Q32ceFEWP7KA6L4a4IVWQ4ZzZSU0m+hjH28TYn6BoQKMbqj8WO/jV4KCGJVEH/qE/Aof/YvFhfxeMAICQBZvtZZnrErcYCIwAcj8A0pxjuAE7qCrEu72S5IaUKmRnHM/Kn1AKxsNbaUtGErMAWPcC2cY4J4Z4oPhTmsctRp0aioGaXOCapxU1jbEjOg8arCFGUOsGO/jVkqW5+lcko2jsn/y9g7T39OPoReCqaJX8PzgTWh2QehNw7GVqmPI1KG3RpLCDqkJ8OippEojanBXGfoQk0D9qQ6sFLr9baSsYWzDEA/1dQHsdEDhYSnJmJz2mblDKKsYRGOKHalDrC0gPU6+ShrigCGDlVkmHBAIwnDhhH3vcgfSNwJH/A/L3AHPvVNqaSeEaVBXi017B9acMw8iDflQtIgCc2QHELhqqMWZcE8OwUbd1+TQEhKWZ3JfIuaTGkusc3fz8l6o2BIGapFgDlWEYORCbZUyOSgFQd5a7990BQzwpwvS0k4OqhvpTRjk0GmqWKv8SaKtR2ppJYQdVbbRdhG6gmzVQGYaRB30sPYqp3rO7AGi4rtgdEKPnNTlAew07qAw1pwnGoTIfFcMOqtoQu205xc8wjBx4+gIB0yjFLwhA3g4g7sohjVvGdREbbQv/S49Ka6AyyhM6GwhPd4o0PzuoaoMdVIZh5MYQTyn+unyg4Rw3R7kLooN6btBBDePudwbULFV1HGgqU9qSCWEHVW00FMOo9R7Sn2QYhrEVw6BY/5mdJGHH6X33wG8K4OlPNyVeAUAwa94yGNJBzftAWTsmgR1UtdFYjO6AKO60ZBhGPgzxNEUodxsQvwQICFPaIsYRaDRDUdTQ2Tx9iSH0sUDMQtWn+dkLUhuNxejxj1baCoZhXAl9HDVGXCrj7n13Q1Rx4AYpZjjpm4D6fKD2jNKWjAs7qGpioA+4VI5uf07DMAwjI2IUTaMDktcragrjYEwRVHZQmWGkbKDrgYqjqDxJyl4M9AOf/1qa1lhfJyAMoDuAI6gMw8iIGEVLWAb4T1XWFsaxiFJT3CDFDCcgFJi+nOpQV/9MleUf7KDaC2EAOH8YaLso7bjQZLRPybCPTQzDuCeBkUDiWmD+vUpbwjiaGauA+KVA9BVKW8KojfSbgV3fAyqPAzHq+/tgB9VeeHgD3/nEqkN7edYwwzByotUCm/+ltBWMEoQmAnd9qLQVjBpJWgfoHqLmSRU6qFyDyjAMwzAM4274BAGJa0h+bqBfaWvGwA4qwzAMwzCMO5K2CeioA8q/VNqSMbCDyjAMwzAM444kXgN4BQJ56uvmZweVYRiGYRjGHfH0BZLXAWf3AP09SlszAnZQGYZhGIZh3JW0TUBPC1C0T2lLRsAOKsMwDMMwjLsyfTngN0V1aX52UBmGYRiGYdwVnSdNljr3X6CnTWlrTLCDyjAMwzAM486k3wz0dwEFe5W2xAQ7qAzDMAzDMO5MzAIgKFpVaX52UBmGYRiGYdwZrRZIuwko+QzobFLaGgDsoDIMwzAMwzAZtwKCANTlK20JAMBDaQMYhmEYhmEYhZmWBjxSAPiHKm0JAHZQGYZhGIZhGAAICFPaAhOc4mcYhmEYhmFUBTuoDMMwDMMwjKpgB5VhGIZhGIZRFeygMgzDMAzDMKrCaRzU3t5ePPvss1iyZAkyMjJwyy234KuvvlLaLIZhGIZhGEZmnMZB3bJlC15//XWsX78eTzzxBLRaLe677z6cOnVKadMYhmEYhmEYGXEKBzUnJwf/+c9/8OMf/xiPPfYYbr31Vrz++uuIiIjAc889p7R5DMMwDMMwjIw4hYP63//+F56enrj55ptNz3l7e2PTpk04ceIE6urqFLSOYRiGYRiGkROncFDz8/ORkJAAf3//Ec9nZGRAEATk56tjLBfDMAzDMAxjO07hoNbX1yMsbOx0g9BQGsfFEVSGYRiGYRjXwSlGnXZ3d8PT03PM897e3gCAnp4eSevl5eXJYpc9OXHihNImOA28V9LhPbMc3ivp8J5Jg/dLGrxf0nDW/XIKB9XHxwd9fX1jnhcdU9FRnQxBEAAAiYmJ8PLyks9AmcnLy0NaWprSZjgFvFfS4T2zHN4r6fCeSYP3Sxq8X9JQ+3719vaisLDQ7GtO4aCGhoaaTePX19cDgNn0vzlEJ3e8zVATzhDlVQu8V9LhPbMc3ivp8J5Jg/dLGrxf0nDW/XIKBzUpKQlvvvkmOjo6RjRKZWdnm163BH9/fyQmJsLT0xMajcYutjIMwzAMwzCTI2a2zWW1ncJBvfbaa/HKK69g27ZtuOuuuwBQWHjHjh2YO3cuwsPDLVpHq9UiMDDQjpYyDMMwDMMwtuIUDmpmZiauvfZaPPfcc6ivr0dsbCx27tyJ6upqPP3000qbxzAMwzAMw8iIRhDjqyqnp6cHL7zwAvbs2YOWlhbMnj0bDz/8MBYvXqy0aQzDMAzDMIyMOI2DyjAMwzAMw7gHTiHUzzAMwzAMw7gP7KAyDMMwDMMwqoIdVIZhGIZhGEZVsIPKMAzDMAzDqAp2UBmGYRiGYRhV4RQ6qI4kJycHO3fuxNGjR1FdXQ29Xo/LLrsMDz30EOLi4ka89+TJk3j22Wdx9uxZBAQEYO3atXjkkUfg6+trek9dXR3eeOMNZGdnIy8vD52dnXjjjTewYMGCMedua2vD888/j3379qGlpQUJCQm47777cP3111tsf0lJCZ566imcPHkSnp6eWLlyJR5//HGEhISY3tPR0YF//vOfyM7ORm5uLlpaWvD000/jpptu4r0atVd//vOf8Ze//GXcNd555x3MmzfPovPJvV9S1rN0zYlobW3Fs88+i3379qG7uxsZGRnYunUrkpOTR7zv3XffxZEjR5CTk4Pq6mrceOONeOaZZyw6h7vt19GjR3HnnXeOu8ZDDz2E733vexadT+r/o9x7tnfvXnz22WfIzc1FeXk55s+fjzfffNNi2wGgtrYWTz31FA4dOgSj0YiFCxdi69atiImJGfG+F198ETk5OcjJyUFDQwN+8IMf4MEHH5R0LnfYqx07dmDr1q3jrvHss89i/fr1Fp9TqT3r6urCjh07sH//fhQVFaGjowPx8fG45ZZbcMstt0Cn01lkvyOvYe6wV3Jfv0bDMlOj+OEPf4iTJ0/i2muvxezZs1FfX4+3334bnZ2d2L59O2bMmAEAyM/Px6233oqZM2fi5ptvRk1NDV555RVceeWVeOmll0zriR9gXFwcQkJCcOrUKbNOV39/P2677TYUFBTg9ttvR2xsLA4ePIhPP/0Uv/3tb7Fhw4ZJba+pqcGGDRsQFBSE22+/HZ2dnXjllVcQFRWF999/H56engCAyspKrF69GhEREYiNjcXRo0etclDdYa8KCgpw7ty5Mcf/4Q9/QGdnJw4ePGh2RJsj9svS9aSsOR5GoxGbN29GYWEh7rnnHhgMBrzzzjuora3Fjh07EBsba3rvqlWr0N7ejvT0dBw9ehTr1q2zykF1h/1qaGjAoUOHxhy/e/duHDx4ENu2bUNGRoZT7Nkdd9yBvLw8pKWlobCwEImJiZKcro6ODtx0003o6OjAXXfdBQ8PD7z22mvQaDTYtWsXgoODTe+dPXs2pk6diuTkZHz55ZdWOajusFcVFRU4efLkmONff/11FBQUICsrC6Ghoarfs8LCQqxfvx6LFi3ClVdeiYCAABw8eBD79u3Dxo0b8dRTT01qu6OvYe6wV3Jfv8YgMCM4ceKE0NPTM+K5srIyIS0tTXj88cdNz917773C0qVLhfb2dtNz77//vpCYmCgcPnzY9FxbW5vQ1NQkCIIg7Nu3T0hMTBSOHDky5rz/+c9/hMTERGHnzp0jnn/wwQeFRYsWjbHJHD//+c+FOXPmCDU1NabnDh06JCQmJgrbtm0zPdfT0yPU1tYKgiAIZ8+eFRITE4UPPvhg0vVH4w57ZY7q6mph9uzZwpNPPjnpeYYj935Zup6UNcdD3PN9+/aZnmtsbBQuv/xy4dFHHx3x3srKSsFoNAqCIAjz5s0bY4uluMt+mePqq68W1qxZM+n7RqPknlVXVwv9/f2CIAjC+vXrhdtvv12S7S+//LIwe/Zs4cyZM6bniouLheTkZOGFF14Y8d6KigpBEAShpaVFSExMFP70pz9JOpcguM9ejaarq0u47LLLhLvvvlvSOQVBuT1rbGwUCgsLx9izZcsWITExUbhw4cKktjv6GuYue2UOa69fo+Ea1FHMnTt3TEQsPj4es2bNQklJCQCgvb0dhw8fxoYNG+Dv72963w033AA/Pz989NFHpucCAgJgMBgmPe/Jkyeh0Wiwdu3aEc9fd911aGxsxNGjRydd45NPPsGqVasQHh5uem7x4sWIj48fYZOXlxfCwsImXW8y3GGvzPHhhx9CEARJ5QSA/PtlyXpS1xyPjz/+GGFhYVi9erXpuZCQEKxduxb79+9HX1+f6fmoqChoNJpJ15wMd9mv0eTk5OD8+fOS/74A5fYMACIiIixOH5rj448/xpw5c5CSkmJ6bsaMGVi0aNGYPY+Ojrb6PCLuslej+eyzz9DR0eFUf18hISGYNWvWGHuuvvpqAEBpaemktjv6GuYuezUaW65fo2EH1QIEQUBDQ4PJeTp37hz6+/uRlpY24n1eXl5ITk5Gfn6+5HP09vbCw8PDlFoWEWtQzp49O+HxtbW1aGxsHGMTAGRkZFhlkzW4w17t2bMHERERuOKKKyRaPha592v0enKsCVAaKjU1dcxFOz09HR0dHbhw4cKka8iBO+zX7t27AUCWCzzgmD2zFaPRiHPnzpn9Tqanp6O8vBxdXV2ynW883GGv9uzZAx8fH5PDYitK7llDQwMAWPReNVzD3GGv5Lx+sYNqAbt370Ztba0pYldfXw8AZmt3QkNDUVdXJ/kcCQkJ6OvrQ05Ozojnjx8/DgCTrim+Pp5NjY2NGBgYkGyXVFx9r4qKinDu3Dl84xvfkCVKKPd+jV5PjjXFNcxF3cXnrPkcrcHV92tgYAAfffQRMjIyzDZuWYMj9sxWmpub0dvbO65NgiCY7LYnrr5Xzc3N+PLLL7Fy5UoEBATIYo9Se9bb24vXX38dsbGxZp310ajhGubqeyX39Ysd1EkoKSnBL3/5S8ybNw833HADAKC7uxsAzDbHeHt7m16Xwrp16xAYGIgtW7bg8OHDqKysxHvvvYd33nlnxDnHo6enZ0KbLFnDVtxhr/bs2QNAnrtDuffL3Hq2rjl8DXPHi8/Z+28LcI/9+uqrr9DQ0CBb9NRRe2Yrrnj9UuNeffzxx+jr63OJv69f/epXKCkpwc9+9jNotZO7Mkpfw9xhr+S+frHM1ATU19fj/vvvR3BwMP74xz+aPlgfHx8AdFcymp6eHtPrUggNDcWLL76Ixx57DHfffTcAqsn86U9/iscffxx+fn4AqHuzs7PTdJxOp0NISIjpwjSeTcPttgfusFeCIODDDz9EYmIikpKSJNs9HLn3a7z1pKzZ29uLlpaWEa+HhIRAp9PBx8fH7PHic/b82wLcZ7/27NkDnU6H6667zuzrUnDknllKd3c32traRjwXGhrqctcvte7Vnj17oNfrsWzZMsn2jEbJPfvHP/6B999/H4888giWLl1qel6t1zB32Ss5r18AO6jj0tbWhvvuuw9tbW149913R4TgxX83l0YZLzRuCVdccQX279+PwsJCdHZ2IikpyRRKj4+PBwC88sorI3Q5o6Ki8Nlnn5nOOZ5NU6ZMsakofyLcZa9OnDiBqqoqPPLII1bZLCL3fk20npQ1T506NUbT7tNPP0V0dPS46SbxOTma7sbDXfaru7sb+/btw6JFizB16tQxr0vB0XtmKXv37h2jy3nu3Dno9Xp4eXmNa5NGo7H6nJPhLntVXV2N48eP45ZbbhlTvy8VJfdsx44deO655/Ctb30L3/3ud0e8psZrmLvslZzXLxF2UM3Q09ODBx54AOXl5Xjttdcwffr0Ea8nJibCw8MDeXl5WLNmjen53t5e5Ofn2xTe1ul0I4RwDx8+DABYuHAhAGDDhg0jhOHFu+nw8HCEhIQgLy9vzJo5OTljhIjlwp32as+ePdBoNFi3bp3VNsu9X5OtJ2XNpKQkvPrqqyOOFS9+SUlJOHXqFARBGFF7m5OTAz8/vxEagnLiTvtlS3e1lP9He+yZpSxZsmTMngGAVqtFYmLiuN/JuLg4iwckSMGd9kpUH5EizG8OJfds//79ePLJJ7FmzRo8+eSTY15X2zXMnfZKruvXCGwWqnIx+vv7hQceeEBISUkRDhw4MO77vvOd7wjLli0zq1126NAhs8dMpO1pjsbGRmHFihXCPffcY9H7f/azn43R9jx8+LCQmJgovP/++2aPsUUH1Z32qre3V5g/f76wefNmi9Y3h9z7Zel6UtYcj4l08R555JFxj7NFB9Xd9uuBBx4QMjMzR5xTKkru2XCs0fb829/+Nkbbs6SkREhOThaef/55s8fYooPqbnt1/fXXCytWrDDpe1qDknt27NgxIT09Xbjjjjss0roejaOvYe62V3Jcv0bDk6RG8Zvf/AZvvPEGVq5cOaYzzt/fH1dddRUA4MyZM7jtttswa9Ys0/SHV199FQsWLMDf//73Ecf99a9/BUBFzR9++CE2btyI6Oho0xQjkW9+85uYN28e4uLiUF9fj/feew9GoxH/+te/EBUVNantFy9exIYNG6DX603Tkf75z38iIiIC27ZtG1H0/NZbb6G1tRUNDQ14++23sWbNGlPk8H/+5394r0YViH/++ed44IEH8Itf/AK33XabRftj7/2ydD0pa47HwMAANm/ejKKiItNkkXfffRcXL17Ejh07RnRsfvbZZygoKAAAvPTSS5gxY4ZJ0uaGG26w6PNxp/0CqLt6yZIlWLNmDZ5//nmL9sccSu7Z119/ja+//hoAjQD28vLCpk2bANBknsnqttvb23HjjTeiq6sLd999N3Q6HV577TUIgoBdu3aNkMfZtWsXqqur0dPTg5deegkLFiwwZU7uuOMOBAYG8l4No7CwENdffz2++93v2lSipNSeVVVV4YYbbkBfXx8ee+yxMQoEc+fOHTMOdzSOvoa5y14B8l2/RsMO6ijuuOMOHDt2zOxrYg2jyPHjx/Hcc8+Z5uded911ePjhh01NOiKzZ8+2aL1f//rX+Pzzz1FbW4vg4GAsX74cP/rRj0aIyU9GUVERnnnmGZw4cQKenp5YsWIFtm7dOmK+PEAXwaqqKrNrmBvtaQ532SsAePjhh/HJJ5/g4MGD0Ov1Fp9jOHLvl5T1LF1zIlpaWvC73/0O+/fvR09PD9LT07FlyxakpqaOeN+WLVuwc+dOs2uYG107Hu6yXwDwr3/9Cz//+c/x4osvYtWqVRatbw4l9+zPf/7ziJrv4Vg6SrmmpmbEfPkFCxbgiSeeGPODOpFdYh3dZLjLXgHA73//e7z88svYvXv3uNdYS1Bqzyab+W7pnjnyGuYuewXId/0aDTuoDMMwDMMwjKpgHVSGYRiGYRhGVbCDyjAMwzAMw6gKdlAZhmEYhmEYVcEOKsMwDMMwDKMq2EFlGIZhGIZhVAU7qAzDMAzDMIyqYAeVYRiGYRiGURXsoDIMwzAMwzCqgh1UhmEYhmEYRlWwg8owDMMwDMOoiv8PekKCNN/10o0AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(figsize=(11, 6))\n", "ax = sns.lineplot(data=df_port, x=\"date\", y=\"mmsi\", hue=\"polygon_name\", palette=\"tab10\")\n", "ax.set(xlabel=\"\", ylabel=\"Unique MMSI\", title=\"Number of unique vessels per month\")\n", "plt.legend(title=\"\") # loc='upper right', labels=['Raw Data', 'Interpolated']\n", "# plt.savefig(\"../docs/images/Output_Mining_Gas.png\", facecolor='white', dpi=300)" ] }, { "cell_type": "code", "execution_count": 198, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 198, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAAGECAYAAAD6PtKMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAADtF0lEQVR4nOydd3zTdf7Hn0nbdK900tJFoS2UvcpUGYqCiqg4cS9c57o79fS80/PnvvPUG56LcyCuUxkKKIKLTUERaEFKd5vuka6kSb6/P75N6EjbpE2atP08Hw8eod/vN5/vO/v9fY/XWyFJkoRAIBAIBAKBQOAmKF1tgEAgEAgEAoFA0B7hoAoEAoFAIBAI3ArhoAoEAoFAIBAI3ArhoAoEAoFAIBAI3ArhoAoEAoFAIBAI3ArhoAoEAoFAIBAI3ArhoAoEQ4TU1FQeeughV5vRJ5qbm3nyySc566yzGDt2LAsXLnSJHXv37iU1NZVPP/3UJecXwMKFC7nmmmtcbYbACoP5O0Yw+BAOqkDQA2aHJTU1lY8++sjqMampqdx2220DbNnQ4vXXX+fdd9/lvPPO4+mnn+YPf/iDq00SCIYlr7zyCtu2bXO1GQIBnq42QCAYLLzyyitceOGF+Pj4uNqUIceuXbtISUnhwQcfdKkdM2bM4PDhw3h6iq9GwfDkH//4BytWrGDx4sWuNkUwzBERVIHABsaPH095eTlvv/22q01xC4xGI83NzQ5br6KigpCQEIet11eUSiXe3t54eHi42hTBIKWhocHVJggEQwLhoAoENnDeeeeRnp7O66+/Tk1NTa/Hd1er9emnn5KamsrevXst21555RVSU1M5efIk//d//8e8efOYNGkS1113HadOnQLgq6++YsWKFUycOJGFCxfy4YcfdnvuXbt2cdlllzFp0iTmzp3Lk08+SWNjY5fjtFotzz//PGeffTbjx49n1qxZ3H///RQWFlq1edeuXfzzn/9k8eLFTJw4kc2bN/f4HBgMBl577TWWLl3KhAkTyMjI4M477+T48eNd1i4qKmLfvn2WcopXXnml23V7qhN96KGHSE1N7bDtmmuuYeHChZSVlXH//fczY8YMJk2axE033URubq5Na9fV1fHoo4+SkZHB5MmTueaaazhy5Ihl7fbY89qD7a+DNZ5//nlSU1PJzs7usk+r1TJx4kTuuOOODtt37drFjTfeyPTp05kwYQIXXHAB69at63L/gwcPcvPNNzN37lwmTJjA/PnzueWWW/jpp58sx9TW1vLUU0+xePFiy2t88cUX88Ybb3RZ78svv+TKK69kypQpTJo0iZUrV7Jly5ZeH6OttnSH+TUqLCzk9ttvZ9q0aUydOpU777zT6nMsSRLvv/8+F198MZMmTWLKlClcc8017Nmzp8NxRUVFlvfql19+ycUXX8zEiRN58skne7THXGObnZ3N9ddfz5QpU5g9ezbPPPMMBoMBnU7Hs88+y/z585kwYQJXX301OTk5Xdaprq7m8ccf58wzz2T8+PGceeaZPP74412+n8zvu927d/Pmm2+yePFixo8fz5IlS/jss8+6PB6Azz77zPJZ7Px5Ajh06BCrVq1i8uTJZGRk8Mgjj1j9jhEI+oPIYwkENqBQKPjtb3/LDTfcwKuvvsrDDz/s8HM8+OCD+Pn5cdttt1FdXc2aNWu4+eab+c1vfsMLL7zAFVdcwSWXXMInn3zCY489RnJyMtOnT++wxtGjR9m6dSsrV65k+fLl7N27l3fffZdff/2VNWvWoFTK16RarZYrrriCkpISLrnkEsaMGUNFRQXvv/8+K1eu5H//+x+xsbEd1n722WcxGAxcdtll+Pv7k5SU1OPj+e1vf8vmzZuZO3cuV155JZWVlaxdu5YrrriCtWvXMm7cOGbMmMFzzz3H008/TWhoKKtXrwaw+qPYH5qamli1ahWTJk3ivvvuo6ioiHfeeYc77riDTZs29RgxbW1t5aabbuKXX35h+fLlTJo0iezsbG644YZ+R3378jq0Z8WKFbzxxhusX7+etLS0Dvs2b96MTqdjxYoVlm0ffvghf/rTn5g8eTKrV6/G19eXXbt28ec//5mCggJLicWpU6e48cYbCQ8P59prryUsLIyqqioyMzPJzs5m8uTJANxzzz0cOHCAK664gtTUVFpaWsjJyWHfvn3cfPPNlvO++OKLvPrqq8yfP5977rkHpVLJ119/zT333MNjjz3G1Vdf3e1jtNWWnmhqauKaa65h4sSJ3H///eTn5/P+++/z888/89lnnxEREWE59ne/+x1ffPEFS5Ys4eKLL0av17Nx40ZuvPFGXnnlFRYtWtRh7W3btvHuu+9y5ZVXcsUVVxAQENCrPRqNhhtuuIGlS5eyZMkSdu7cyZo1a/Dw8ODkyZO0tLRw6623UlNTw1tvvcUdd9zB5s2bO3x+r7zySvLz87nkkksYN24cWVlZrFu3jj179vDxxx93sePFF1+kpaWFyy+/HJVKxbp163jooYeIj49n2rRpqNVqnnvuOX7/+98zffp0LrvsMqu2Z2VlsXr1ai6++GLOP/989u3bxyeffIJSqeQvf/lLr49dILAZSSAQdMuePXuklJQU6Y033pAkSZJuuOEGafz48VJRUZHlmJSUFOnWW2/tcL+UlBTpwQcf7LLe//73PyklJUXas2ePZdvLL78spaSkSLfddptkMpks299++20pJSVFmjJlilRSUmLZXlVVJY0fP1667777upwzJSVF+vrrrzts/8tf/iKlpKRImzZt6rBtwoQJUlZWVodji4qKpClTpnSw3WzzOeecIzU1NXX/ZLXjxx9/lFJSUqR77rmnw2PKysqSxo4dK1155ZUdjl+wYIG0atUqm9Y2vyb/+9//uux78MEHpZSUlA7bVq1aJaWkpEivvfZah+2vv/66lJKSIn3//fc9rv3BBx9IKSkp0ksvvdTh/mvWrJFSUlKkBQsWdNhuz2tvz+vQHRdffLE0d+5cyWAwdNh+5ZVXSjNnzpR0Op0kSZJUVlYmjR8/Xrr//vu7rPGXv/xFSktLkwoKCiRJOv3e+/nnn7s9b319vZSSkiL96U9/6tG+I0eOSCkpKdJf//rXLvtuv/12acqUKZJWq7Vs6/xesMWWnjC//k8++WSH7V999ZWUkpIi/fGPf+yy7YMPPuhwbGtrq7RixQppwYIFlvdzYWGhlJKSIo0bN046efKkzfYsWLBASklJkb788ssO21esWCGlpqZKq1evtvo90P59+re//U1KSUmR3nvvvQ5rvPfee1JKSor04osvWraZ33fLly+3vBckSZI0Go2Unp5u9Xuku/ddSkqKlJqaKv30008dtt9yyy3SuHHjpIaGBtueBIHABkSKXyCwg9/+9re0trby0ksvOXzta665BoVCYfnbHB1duHAhI0aMsGxXq9UkJSWRl5fXZY2kpKQuzQ233norAF9//TUgpzA3btzIjBkziIyMpLq62vLP19eXyZMn8+OPP3ZZ+8orr8TX19emx2I+1+rVqzs8prS0NBYsWEBmZibV1dU2reUIlEol1157bYdts2bNAiA/P7/H+27btg0PDw9uvPHGDtuvuuoqm6Jl3dHX16EzK1asoKKigp07d1q2FRYWcvDgQc4//3xUKhUAW7duRa/Xc+mll3Y4V3V1NQsXLsRkMrFr1y4AAgMDAfjmm2/Q6XRWz+vt7Y1KpeLw4cMUFRV1a9/GjRtRKBRcdNFFVs/b2NjYY6reFltswfw5MHP22WeTlJTEN998Y9m2YcMG/P39Wbx4cQc76+vrWbhwIcXFxV0+d2eeeSbJycl22RIVFcV5553XYdvUqVORJKnb74H279Ovv/4atVrN5Zdf3mGNyy+/HLVabbUL/6qrrrK8F8w2dPc90hOTJ09m0qRJHbbNmjULg8FAcXGxXWsJBD0hUvwCgR2MGzeOZcuWWVJ+ndOq/SEuLq7D30FBQQCMHDmyy7HBwcFWfwys/VBGRkYSFBRkqberrq6mtraWH3/8kdmzZ1u1xZxKbE9vKf32FBUVoVQqrdozevRotm3bRlFREWq12uY1+0NkZCTe3t4dtpnT87W1tT3et7CwkIiIiC7OqEqlIi4ujvr6+j7Z1NfXoTPLli3jmWeeYf369ZxxxhkArF+/HkmSWL58ueU4cx3j9ddf3+1alZWVljU3bNjAq6++yn//+18mTZrEvHnzWLZsmaXkQKVS8Yc//IH/+7//Y9GiRYwePZpZs2axePHiDo8nJycHSZK6OGTWztvd4+vNlt4ICgrqkMY3k5yczLZt22hqasLPz4+cnBwaGxuZM2dOt2tVVVV1+CwkJibaZEN7uvtMW9tn/h5o/z4tKipi/PjxXdQmPD09SUxM5NixY13W7/z9AvJnwF6nsrt1OtsoEPQX4aAKBHZy7733snXrVl544QWrzSA9YTQau93XnTPi6I5ySZIAmDNnDrfccovN93MXea320aXOGAwGq9t7eg7Nz4ez6fza9/V16ExoaChnnnkm27Zto6GhgYCAANavX09ycjITJ07scr5nn32WyMhIq2uZnQ+VSsWaNWs4fPgwP/zwAwcOHODll1/mH//4B3/96185++yzATmqvmjRIr777jv27dvH1q1bee+991i6dCkvvvii5bwKhYLXX3+929dh9OjR3T4+W21xBJIkoVar+etf/9rtMWPGjOnwt61Zhfb09H7s7nugv+9TWy52bMEdPkuC4YFwUAUCO4mLi+PKK6/knXfe6dKRbSYkJMRqNMGWzuz+YK3bt7y8nPr6eovzoVarCQoKoqGhocdIUX+Ii4vDZDKRk5PTJcpsttFaFMkWzJGmurq6Lvt6SjX3lbi4OHbu3Glx/szo9XoKCwst9pix9bV35OuwYsUKtm3bxpYtW0hKSqKgoIAHHnigwzHmSF9oaKjN55s4caLFyS0tLeWiiy7i73//ewenMDIykpUrV7Jy5UqMRiO///3v2bRpEzfccAMTJ04kMTGRH374gZiYGLtT4fba0h319fVUVFR0iaLm5OQQFhaGn58fAAkJCeTl5TFp0iT8/f37bKuziYuLIzc3F4PB0CGKajAYyMvLsxrlFAgGG6IGVSDoA7fffjsBAQE8//zzVvcnJiby008/ddAKraurc/oIzdzc3C71Z6+//jqApTZVqVRywQUXcPjw4W5lfqqqqvplh/lcr732WoeoyokTJ9i+fbula7gvjBw5Ek9PT0u9pJmDBw/aJDtkL4sWLcJoNPLWW2912P7+++9b1by09bV35Otw5plnEhoayvr161m/fj1KpbJDeh9kqTSVSsUrr7xCS0tLlzW0Wi16vR7Aan1wdHQ0arXacmHQ3NzcRQvXw8PDosBgPu7CCy8E4G9/+5vVDEJP6X1bbbGF1157rcPfX3/9Nbm5uR1qti+66CJMJhN/+9vfrK7Rm60DhblG9uOPP+6w/aOPPqK6urpfIvt+fn4iVS9wC0QEVSDoA2q1mptuuqnbZqmrr76a3/3ud1x33XUsX76c+vp6Pv74Y2JiYqioqHCaXSkpKfzud79j5cqVJCQksHfvXrZu3crMmTNZunSp5bj77ruPgwcPcu+993LeeecxadIkvLy8KCkp4fvvvyc9PZ1nnnmmz3bMnTuX8847jy+++IK6ujoWLFhgkU/y9vbm0Ucf7fPa/v7+rFixgo8//pj777+fmTNnkp+fb9F7tKYJ2h8uvvhiPvroI/75z39SVFTE5MmTycrKYsuWLcTHx3dxuux57R31Onh5eXH++efz3nvvceTIEebMmUNUVFSHY6Kjo/nzn//Mo48+ytKlS7nwwguJjY2lurqaEydOsG3bNr744gtGjhzJv//9b3bu3MlZZ53FyJEjkSSJHTt2cOrUKYt8VF5eHqtWreLss89mzJgxBAUFcerUKdatW8fIkSMtzT0TJ07k7rvv5pVXXuGiiy5iyZIlREVFUV5eztGjR/n+++85cuRIt4/NFlt6IzQ0lK+//pry8nLL++X9998nPDycu+66y3Lcueeey8UXX8x7773H0aNHWbBgAaGhoWg0Gn766Sfy8/M7NFW5iptvvpktW7bwxBNPcOzYMcaOHUtWVhaffPIJSUlJNj8v1pg8eTK7d+/mtddeIyYmBoVCwbJlyxxovUBgG8JBFQj6yA033MD7779v1eG88MILKS8vZ+3atTz99NPExcVxxx13oFQq+fnnn51mU3p6Og8//DAvvvgiH3zwAQEBAaxatYr77ruvQw1aYGAg69at46233mLLli188803eHh4EB0dzbRp01i5cmW/bXnhhRcYN24cn332Gc888wx+fn7MmDGDe+65p986pw8//DCSJLFt2za++eYb0tPT+fe//81HH33kcAdVpVLx1ltv8dxzz/HNN9/w1VdfMWHCBMu2zk0m9rz2jnwdLrroIt59912ampq6RE/NXHLJJSQmJvLWW2/x4YcfotVqCQkJISkpiXvuuceSAl+8eDEVFRVs2bKFyspKfHx8SEhI4Mknn+TSSy8FZIf3kksuYe/evWzbtg29Xk9UVBQrV67klltu6VCbeddddzF+/Hjeffdd3nnnHZqamggLC2PMmDE88sgjPT4uW2zpDT8/P95++22eeuop/vrXvyJJEvPnz+ehhx7qUo/79NNPk5GRwUcffcR//vMfWltbiYiIYNy4cV3KJlyF+X3z8ssvs337dj799FPCwsK44ooruPvuu/ulLvGnP/2JJ554gldffdUivi8cVIErUEiiqlkgEAj6xDXXXENxcTHbt293tSmCbhCvkUAwOBE1qAKBQCAQCAQCt0I4qAKBQCAQCAQCt0I4qAKBQCAQCAQCt0LUoAoEAoFAIBAI3Iph1cVvMplobGzEy8urx2k0AoFAIBAIBALnYo6Rent7d/HLhpWD2tjYyIkTJ1xthkAgEAgEAoGgjfHjx+Pt7d1h27ByUL28vABZzFylUrnYmu45cuQI48ePd7UZgwLxXNmPeM5sRzxX9iOeM/sQz5d9iOfLPtz9+dLr9d0GDoeVg2oOH6tUqi6eurvh7va5E+K5sh/xnNmOeK7sRzxn9iGeL/sQz5d9DNbnS3TxCwQCgUAgEAjcCuGgCgQCgUAgEAjcCuGgCgQCgUAgEAjcCuGgCgQCgUAgEAjcCuGgCgQCgUAgEAjcimHVxS8QCAQCgbuRk5ODXq93tRmDAk9PT7KyslxtxqDBVc+XSqUiPDyc4ODgPq8hHFSBQCAQCFxAS0sLKpWKESNG4OvrKyYc2kBjYyP+/v6uNmPQ4IrnS5IkmpubKSoqwtvbGx8fnz6tI1L8AoFAIBC4gIqKCsLDw/Hz8xPOqWDIoFAo8PPzIzw8nIqKij6vIxxUgUAgEAhcQEtLC35+fq42QyBwCoGBgbS0tPT5/sJBFQgEAoHABRgMBjw8PFxthkDgFDw9PTEYDH2+v3BQBQKBQCBwESK1Lxiq9Pe9LRxUweBl1yuEFWx2tRUCgUAgEAgcjHBQBYOX/W8QfXKdq60QCAQCgUDgYISDKhicSBLUl+LTWAT1Ja62RiAQCASdeOONN0hNTeW6666zur+oqIjU1FT++9//2r32Nddcw/Lly20+fvPmzaSmpnL22Wd3e0xqaqrl37hx48jIyGDlypU8//zzFBYWdjl+7969pKamsm3bNqvr3XHHHSxcuLDDtoULF3LHHXd0ObaqqoqnnnqKs88+mwkTJjBr1ixWr17N/v37ezyv0Wjk4osv5qyzzqKpqanLsQUFBUyYMIGHHnqow/Zly5aRmprK559/btX2V155hdTUVOrr663unz59epc1HY1wUAWDk+YaMOrk/+f+4FpbBAKBQNCFjRs3Ehsby759+ygvL3cLWwoKCvj555+7PW7evHk899xzPPXUU9x5552MGjWKtWvXsmzZMtavX+8U23Jycli+fDkffPAB8+fP57HHHuOGG24gLy+PVatW8c4773R7Xw8PDx5//HHKysp45ZVXuux/5pln8PPz4/e//71lW1ZWFidPniQ2NpZNmzY55TE5AuGgCgYnWs3p/+cJB1UgEAjciZMnT5Kdnc1jjz2Gr68vX375pctsqaur4/vvv+eOO+4gMTGRjRs3dnvsqFGjWL58ORdddBHXXnstzz77LJs3byY2NpZHHnnE4VOZWltb+c1vfkNjYyPvv/8+jz32GCtXruS2225j/fr1ZGRk8PTTT3Pw4MFu15gwYQJXX30177zzDtnZ2ZbtX375JXv27OHBBx9ErVZbtm/cuJGYmBjuuecedu/eTXV1tUMfk6MQDqpgcKItBaBVFSocVIFAIHAzNm7cSHh4OPPnz2fRokVs2LDBZbZs3boVgLPPPpvzzjuPzZs3YzQabb7/iBEjeOaZZ2htbeWNN95wuG0nT57k1ltvZfz48R32eXt789RTT6FQKPjXv/7V4zr33nsvYWFh/PnPf0aSJBoaGnj66aeZPn06F198seU4SZL44osvOPfcc1m8eDGenp4uvXjoCeGgCgYnbRHU6tgFUJMHtV3rgwQCgUDgGjZt2sSSJUvw8PBg2bJlHD16lNzcXJfYsnHjRubOnUtwcDDLli2jsrKS3bt327XGpEmTSEhIYNeuXV32NTQ0UF1d3eVfa2trr+vu2LEDoNt62pEjRzJt2jT27NmDTqfrdp2AgAAeffRRDh06xEcffcRLL71ETU0Nf/jDHzoct3//fjQaDUuXLsXf358zzzyzxzR/XV2d1ccmSVKvj62/eDr9DAKBM2iLoFbHLiIq91M5ijr5KhcbJRAIBIKDBw9SVFTE0qVLASzO4caNG/nNb34zoLaUlZVx4MABnn76aQDGjBnDmDFj2LhxI/PmzbNrrdGjR/PNN9/Q0NBAQECAZfuDDz7Y7X1iY2N7XDMnJ4fAwEBiYmK6PSY1NZV9+/aRl5dHampqt8edc845LFiwgOeff56mpiZWr15NYmJih2M2btxIXFwcEyZMAGDp0qXcc889FBYWEhcX12XNxYsX92i/MxEOqmBwotWATwhNIangq4a8H4WDKhAIBj3/yyziowOuzwhdNj2OS6aN7NN9N23aRFRUFNOmTQPAy8uLs88+m02bNg24g7pp0ya8vLw6OFpLly7ljTfe4PHHH8fHx8fmtcxjaRsbGzs4qHfffTdTp07tcvzLL7/ca3NYY2Mj/v7+PR5j3t/Y2NirjY899hjnnXceMTExrF69ukMUV6/Xs3XrVq644grLtrPOOgt/f382bdrE7bff3mW9f/7zn1bH8d5555292tJfhIMqGJxoSyFwBCiUkDhPdPILBAKBG2AwGNi8eTNz586loKDAsn3y5Ml88sknHD58mIkTJw6YPRs3bmTSpElUVVVRVVUFwPjx42lsbGT79u2WKK8tmGWcOjuUaWlpzJkzp8vx7733Xq8Oqr+/PzU1NT0eY3ZMw8LCerUxJiaGsLAwUlJSUKlUHRzU77//nrq6OiZMmEB+fr5l+7Rp07p1UGfOnElQUFCX7QMxolc4qILBiVYDgdHy/xPnQ9YGuRY1NNGVVrk1kiTx3p584jG52hSBQNANl0wb2efIpTuwc+dOqqur2bhxo9Vu+Y0bNw6Yg5qTk2Ppuj/nnHO67N+0aZNdDuqvv/6KWq3uED3tL8nJyWRlZVFSUtJtmv/48eN4eXkRFRXVr3OZa03vuusuq/uzsrIYO3Zsv87hSISDKhicaDUQniL/P2m+fJv3o3BQeyC3spE/rj/KbdOCONPVxggEgiHJxo0biY6O5uGHH+6yb/369WzevJmHHnpoQCJwGzZswNvbm2effbbLXPgff/yRzz//nLq6OoKDg3td6+eff6agoIALLrjAoTaeddZZbNq0iQ0bNrB69eou+0tKSsjMzGTRokV2lSN0pqGhgR07dnDhhReyaNGiLvsfeeQRNmzYIBxUgaBfmEzQ0C6CGpEGfuFymn/KKtfa5sZUNugBqG8REVSBQOB4mpub+eabb1i+fDnnnntul/0+Pj5s376dPXv2MHfuXKfb88UXX5CRkcF5553XZV9ycjIff/wxW7du5bLLLutxHY1Gw0MPPYSXlxc333yzQ21csmQJ//73v3nttdc488wzOziIer2eP/zhDygUin6fd9u2bbS0tHDNNddYjWB/+eWXfPnll/z+97/v4sy7CuGgCgYfTVVgMsg1qAAKhVyHmveDPALVTT5c7kZVgyxRUqcTDqpAIHA833zzDU1NTSxYsMDq/lmzZuHj42ORfTKza9cuq2M6ly1bRkJCQrfnq6qqsqoPmpycTGRkJIWFhdxwww1W7ztmzBhGjhzJxo0bOziop06dYv369UiShFar5ejRo2zZsgVJknjmmWdIS0vr1p6+oFKpePnll7n++uu54ooruPTSS0lLS6OmpobPPvuM/Px8Hn30USZNmtSv85h1ac3d+51ZsGABW7duZd++fWRkZPTrXI5COKiCwYe2RL4NjIbmtm1J8+HY51B9CsKSXWWZW1PVKEdQhYMqEAicwaZNm/D19WXWrFlW9/v4+DB79my+/vprHn/8ccv27777ju+++67L8WPHju3RQa2oqOCll17qsn3JkiVEREQAdOssm/etXbsWjUZDdLSckfvxxx/58ccf8fDwICAggPj4eK6++mquuOIKqzJMjmD06NGsX7+eV199lR07dvDhhx9ampvefPNNu+WwOlNVVcXu3btZvnx5t9HRM888E6VSyaZNm9zGQVVIA6G26ibodDqOHDnC+PHj8fb2drU53ZKZmWmR5xBY4cRWeP8yuGkbmeVK+bmqOAH/nAEXvAzTrnO1hW7JS9t+5cVtJ5gQqWLj/We72pxBgfgs2o94zmwnKyuL+Pj4XmWGBKexRZZpKJCZmckNN9zApEmTePPNN1GpVH1ax9XPV2+NVz35ZWKSlGDw0SbSb6lBBQgfAwFRYuxpD1Q1tqX4RQ2qQCAQuDXTpk3j+eef58CBAzz88MMDMrnJ3RApfsHgo23MKQFRQJvGnLkONVfUoXaHOcVfL1L8AoFA4PYsWbLEIpM1HBERVMHgQ1sqd+17dkp5JM6Xu/urclxjl5tjbpKq15swmYbf1bhAIBAIBg/CQRUMPrQaCBrRdXvSGfJt3vcDa88gobotgmqSoK65tZejBQKBQCBwHcJBFQw+zGNOO6MeJW8XY0+tUtWgJ9BHruox16MOK2oLoL7E1VYIBAKBwAaEgyoYfLQfc9oehUJO8+f9KNehCiwYTRI1TXpSogIB2Vkddnx4Day/09VWCAQCgcAGhIMqGFwYDdBQbj2CCrIeamM5VJ4YWLvcnNomPSYJUqLkGdLmhqlhg74RNIeh9Gdx8SIQCASDAOGgCgYXjeWAZD2CCnInP0CuqENtj7n+dEykOYI6zFL8pT+DZJKnkDWUu9oagUAgEPSCcFAFgwuLBmo3EdTQJAgaKfRQO1HZltIfM1wjqMWZp/9fftR1dggEAoHAJoSDKhhc1FsR6W+PQiGn+UUdagfMTVGRgT4EqBTDrwa1OBN8QuT/lw9fXUGBQCAYLLjMQf3ll1+48847WbBgARMnTmTu3LncdNNNHDx4sMuxBw8e5Morr2TSpEnMnTuXJ598kubmZiurCoY8vUVQQU7zN1UJR6Qd5hR/WICKYG+l5e9hQ3EmJC8A/wgoO+ZqawQCgUDQCy5zUAsLCzEajaxcuZI//vGP3HTTTVRXV7Nq1Sp27txpOS4rK4vrr78enU7HQw89xKWXXsqHH37Ifffd5yrTBa5EqwGFUnY0uiNxvnwr0vwWKhv0KBQQ6qciyFtJ5XCqQW2okCWmYqdB5DiR4hcIBIJBgMtGnS5dupSlS5d22HbllVeyePFi3nnnHebOnQvA3/72N0JCQnj33Xfx9/cHYOTIkTz66KPs3r2b2bNnD7jtAhei1cgjTpUe3R8TmgAh8XKjVMZtA2ebG1PdqCPUT4WHUkGwt3J41aCWtGVlYqfJOqgH1oDJBEpR4SQQOJLU1FSbjvvmm28YOXIkAI8//jjvv/8+l1xyCU899VSXY/fu3cu1115r+VupVBIWFsbs2bO5//77GTFiBA899BCfffZZr+e96667WLFiBYsWLeLhhx/m+uuv73LMK6+8wj/+8Q/2799PUFAQAHq9nnXr1vHZZ59RUFCAUqkkKiqKqVOncv3115OcnGzT4xbYh8scVGv4+vqiVqupr68HoKGhgV27dnHTTTdZnFOA5cuX89RTT7F582bhoA43tKXd15+2J/EMOP6FcETaqGrQo/aXR8MGeSs5UTuMHNTiTDnqPmISVJ0EQzPU5EKY+FERCBzJc8891+Hvt99+m5KSEh5++OEO29VqNQAGg4HNmzcTGxvL119/zZ///GdUqk4jrNu47rrrSE9Pp6GhgePHj/O///2PgwcP8sUXX3D55Zd38AWOHj3K22+/zerVqxk1apRlu60OdGd+85vf8P3337Ns2TJWrlyJwWDg1KlTfPvtt0yZMkU4qE7C5Q5qQ0MDer2e2tpaPv/8c06cOMGdd8pi2sePH8dgMDB+/PgO91GpVIwdO5asLFFjOOzQauQIaW8kzoOf3pPTudETnG+Xm1PVqCeszUEN9lFS09SM0SThoVS42LIBoDgTIsaCyh8i0+Vt5ceEgyoQOJjly5d3+Hvr1q3U1tZ22W5m586d1NTU8PLLL3Pttdfy3XffcfbZZ1s9dubMmSxevJjGxkb8/f0JDg7mtddeY/v27SxdupQpU6ZYjvX39+ftt99mzpw5ZGRkdFinqKjIrsd0+PBhduzYwQMPPMCtt97aYZ/RaLQE1ASOx+WhpT/84Q/Mnj2b8847j7feeosrrriC1atXA1BRUQFARETXesOIiAjKy4We4bCjuzGnnUlqq0MVY08BWfc0PMAbgGBvJZIENU3DIIoqSbKDGjtV/jsyDVCIRimBwA3YsGED48ePZ+bMmUydOpWNGzfafN9p06YBcj+LMzGvbz5fezw8PAgNDXXq+YczLo+g3nnnnVx++eVoNBrWr1+PXq+ntbUVlUpFS0sLgNWQv7e3t2W/vRw5cqRfNg8EmZmZvR80zFAY9UxtrqZYa0LT7vnp7rlK94uh5adN5KgyrO4fTpTVNTEmSCIzM5Mgb/m69Id9h4gP9nKxZc5F1VjChOYa8o0RVLa9T9L9RtB0fCe5gbZ9xsRn0X7Ec2Ybnp7yT3BjY6OLLXEORqMRk8lk9fE1NzfzzTffcNttt9HY2MjixYv5+9//TllZGQEBAZbjzL/zLS0tlnUaGxvJzc0FwMfHp8v61u7T/rwg15Vas0uvly/cm5qaOjign332GaNHj7a8ZoMJV76/9Hp9n78PXP5Mp6amWupCLrzwQi655BIefvhhXn75ZXx8fIDTb5j26HQ6y357GT9+PN7e3n032slkZmZavVob9tTkAxCbOo3YqfLz0+NzVbQIn6wNTJsyueemqiGOwWii4ePNpCXFMm1aCkfKdwEQlTCaacnhLrbOyfwi/4glzF5BwoiJ8rYTU/Cp+hW1DZ8x8Vm0H/Gc2Y65TK19j8VQwsPDA6VSafXxbd++nZaWFpYvX46/vz8XXnghL7zwAj/++COXXHKJ5Tjz77zBYECn01FXV0dOTg5vvPEGKpWKJUuWdFnffB8fH58u+3x9fQE58GXNLnNAzM/PD39/f2bPns3MmTP5+OOP+fbbb8nIyGDatGksWLCAESNsyOa5GHNJhKtQqVRMmjSp2/06na7boKHLHdT2eHl5sWjRIv7973/T0tJiSe2bU/3tqaioIDIycqBNFLgSrUa+tSXFD5B0Bhx6FzS/QMxkp5nl7lS3pfLD2jVJAcNDrL/4IHj6QuTY09uixsGJLdDaAl59u8gVCJzGT+vg0HuutgKmrILJVzpt+U2bNjF58mRiYmIACA8PZ+bMmWzatKmDg2rmwQcf7PB3bGws//rXv4iOtqFpth8oFArefPNN3nzzTTZs2MCmTZvYtGkTjz/+OOeffz6PP/54h4ivwHG4vAa1My0tLUiSRGNjIykpKXh6enbxrvV6PVlZWYwdO7abVQRDEm0vU6Q6kzhPvs370Tn2DBJOi/S31aD6eHTYPqQpzpS79z3alTJEjgPJCJUnXGeXQDCMqampYefOnUyfPp38/HzLv+nTp7Nnzx6rQam7776bNWvW8MILL7BkyRJqamq67fh3BArF6QZSlUrF7bffzubNm/nhhx/429/+xuTJk9m0aRNPPPGE02wY7rgsglpdXW2RmjDT0NDA1q1bGTFiBGFhYQDMnj2b9evXc9ttt1nC1OvXr6epqYlzzz13wO0WuBB7I6hBMaBOlgX759zlPLvcHHOk1CwzFaBSoFDIjVNDGmMrlP4M02/suD1ynHxbfgzMaX+BwF2YfKVTI5fuwObNm2ltbeX111/n9ddf77L/iy++6KJRmpaWxpw5c2hsbOT888/n+uuv57e//S1btmyxK4VtLu/T6ax//5lrVLsrA4yMjGTZsmWcc845nH/++Xz55Zc89dRTg7I21d1x2TN677334u3tzZQpU4iIiKC0tJRPP/0UjUbD3/72N8tx9913H1dccQXXXHMNK1euRKPRsGbNGs444wzmzJnjKvMFrkBbAkov8FP3fqyZpPlw5FMwGsBjeH6BmEX5wwNkB9VDoUDtpxr6Yv3lWbLmqbmD30xYMniooExMlBIIXMHGjRsZN24ct93WdZDKf//7XzZu3GhVRN+MQqHgvvvu4/LLL2ft2rVd5J96IjQ0FB8fH0uTVWdyc3MJDw/vNTrr5eVFamoqeXl51NTUWFUbEvQPl/1iX3jhhaxfv553332X+vp6AgMDmTx5Ms899xwzZ860HJeenm4J6z/99NMEBARw2WWXcf/997vKdIGr0Grk6KnCDu3OxPmQ+V/Q/CxPEhqGmCOlYf6nIwJhAaqhX4Na3NY52vl19/CC8FQ5gioQCAaU4uJiDh06xAMPPGA1C1pVVcUTTzxBXl4eiYmJ3a4zefJkpk2bxttvv811111nc+Ozp6cnc+bMYdu2bWg0mg41rHl5eezcuZNly5Z12KZSqSy1smbq6+s5dOgQwcHBXbLBAsfgMgf10ksv5dJLL7Xp2OnTp/PBBx842SKB22PrFKn2JLbpoeb9OIwdVL084tT3dB2m2l9FVeMQT/EXZ4KvGkITu+6LGjfsa5MFAlewadMmJEliwYIFVvefddZZPPHEE2zcuJG77767x7VuvPFG7rzzTj799FOuvNL2soj777+fyy67jBUrVnDZZZcRExNDQUEBH374IX5+ftx11+mSsOzsbH77298yf/58pk+fTnBwMGVlZXz++eeUl5fzhz/8AQ+P4asS40zcrklKIOgWrcZ+BzUwCsJThrVgf1WjnlA/Fcp2U6PCAryHfoq/+KB8UWIt4h45FuqLoblm4O0SCIYxmzZtIi4ujtGjR1vdHxsbS0pKCps2bep1rYULF5KQkMBbb72F0Wi02YYxY8bw8ccfk5GRwUcffcQTTzzB+vXrWbBgAR9//DGxsbGWY2fMmMFvfvMbGhoaWLNmDX/60594++23iYmJ4eWXX+a6666z+bwC+xieRXmCwYlWA6OsX3X3SOJ8OPyh3DTjMbSF6a1R1aCzSEyZCfMf4il+XQNUZMHY863vt4w8zYIE19ay7z1VxT+/zeGNa6ej8hQxA8HQ4V//+leXbbZMi2p/TEZGBsePH7d6nFKp5KuvvuqyffHixd3ex8zo0aP5+9//3qstYWFh3HrrrXbVuQocg/g2FAwOdA2gq7c/ggpyo5S+Qe7oHoZUN+oJC+jsoHpT19xKq9HkIqucTOnPIJm6L+uIatfJ72J++LWS709UkFPR4GpTBAKBwG0QDqpgcNBQJt8GxfR8nDUS2vRQc793nD2DiKpGvUViyoy6zWGtGappfnODVMxU6/uDYsE7GMpc76Bq6uWxjMc1WhdbIhAIBO6DcFAFgwN7RfrbExABEWNlPdRhSFWDjvCAjh2u4W0O65CtQy3OhJB4+bW3hkIh16G6QQS1zOyglgkHVSAQCMwIB1UwOLBXpL8zSfOhYA8YhqhD1g16g4n6FkPXCKrZQR2qdaglB3tXbYgaJ0dQJWlgbOoGTZ2IoAoEAkFnhIMqGBz0J4IK8tjT1iYoOeQ4mwYBNU3mMaedalDbIqpDUmqqoQJqC3p3UCPHga4O6ksGxq5uECl+gUAg6IpwUAWDA60GvPzAO6hv9zfXoeYNrzrUSisi/XB6qtSQjKCWHJRvbXFQwaVp/ia9AW2LgWBfL4prm6lvaXWZLQKBQOBOCAdVMDgwi/TbM0WqPf5hEDV+2Omhmh3QzhHUIB8vPJSKoRlBLc4EhRJGTOr5OHMnvwtHnprT+/PHhAPwq6hDFQgEAkA4qILBQn1p3+tPzSTOg8J9YBiCTlk3VLc1QXXWQVUqFaj9VZb9Q4riTDk6qvLv+TjfUAiMkbVQXYQ5vX9GitzMlS3S/MMOycU10AKBs+jve1s4qILBQV/GnHYmcT4Ymk9LEA0Dukvxy9tUVA61FL8kya9vbDfyUp2JHAvlrougmjv4p8aHEuDtKepQhxleXl7odMPnglkwvGhubsbLq+/DcYSDOtw4uQ2+f16eqjRYkKS2Maf9jaDOBRTDKs1f3ajHU6kgyLfr0LiwgCEYQa3JlceXdqd/2pmocVBxAowG59rVDZo62TkZEexDSlSAcFCHGZGRkZSUlNDU1CQiqYIhgyRJNDU1UVxcTGRkZJ/XEaNOhxsH1kD2Jsj5FlaugYC+v3kGjJY6OfLZ3wiqbyiEjwHNYcfYNQioapBF+hVWanfV/t78UlQ78EY5k2IbG6TMRKaDUQfVORCR6jy7uqGsvoVAb0/8vT1JjQ5i85FSJEmy+noJhh5BQUHo9XpKSkpobR1EQQMXotfrUalUvR8oAFz3fHl5eREVFUVQUB8bmxEO6vCjpQ78wqH4APznTLj8PRhp44+5q+ivBmp71MlQndv/dQYJVY16i6RUZ8L8VUNPqL84Ezx95dS9LbQfeeoCB1VT10JUsA8AqVEBrNvXSrlWR1SQz4DbInAdo0ePdrUJg4bMzEwmTeqlAVJgYTA/XyLFP9xoroWRM+Cmr8DDE9acC5lvu9qqnrFooDrCQR0F1adcLs4+UFQ16iySUp0JD1ChbTGgMxgH2ConUpwpd+972Fj3FJ4id/y7aOSppr6F6DZnNDVajjSIRimBQCAQDurwo6UWfEPkH/Fbv5M72zf+Bjb8xn272y0R1H6m+AHUSXK5gHnNIY45xW8NdVvj1JCpQzW2QunPtqf3Abx85ai6i7RQy+pbLNHStOhAAE4IB1UgEAiEgzrsaK6RazEB/NRw9Scw7344+DasOQ/qil1rnzX6O0WqPepR8m31qf6vNQiobtRb7eCH09qoQ0asv/wYGFps7+A3EzXOJQ6q0SRRrtURHSy/PqH+KiIDvUUEVSAQCBAO6vDC2Ar6BvAJOb1N6QGL/wSXvQsVx+G1MyHvR5eZaBWtBryDe9e1tIVh5KC2tBpp0Bm6iPSbMWujDpk6VHsbpMxEjpPrkvWNjrepB6oadBhNkiXFD5AaHcjxsvoBtUMgEAjcEeGgDida6uRb35Cu+8ZdCLdsl53Xty+EPf92nzpNR2igmgmOA6XnsHBQuxPpN2NunqoeKtOkijPBVw2hifbdL3IcIEFFtjOs6hazSH/7hqjUqEB+LWvAaHKTz55AIBC4COGgDieaa+Xb9hHU9kSkyk5qyrmw5SH49BbQNw2Udd2j1TjOQfXwhJCEYeGgmlP33degDrEUf/FBOXpqr0RTVLp8O8CNUuYxp9HBHSOoOoOJ/KqBjeYKBAKBuyEc1OFES618ay2CasYnSJaeWvgo/PIJvHmO62WZtA4Yc9oecyf/EKeqLTLancxUkI8nXh6KoZHi1zVARZb96X2QI66evgM+8tQ8Rapzih8Qgv0CgWDYIxzU4YQ5gmpukuoOpRLO+B1c/THUFcBrZ0Hu9862zjomk2MjqCA7qDV57lPC4CTMkdHuZKYUCgVh/t5UNQyBFH/pzyCZ7G+QArkOOyJ1wEeeaupb8FAqOlxAjIkMRKEQUlMCgUAgHNThRHONfNtdir8zY86GW7+Vu/03P+Qsq3qmuRpMrY6PoOrqoanKcWu6IeYa1O5S/OZ9QyLFX5wp39o64rQzUekDnuIvq9cREeCNh/J0SYKvyoPEMH9OlAkHVSAQDG+EgzqcsCXF3xn1KJhwmZw+HeAuZ8CxElNm1Eny7RBP81c26lB5Kgnw7n5gXFjAEJkmVZwJIfEQENG3+0eOg8ZyaKx0rF09UFZ/eopUe1KjAkWKXyAQDHuEgzqc6K1JqjtipsjpU80vjraodxw55tTMMJGaqmrQE+av6nGuuzzudAik+M0NUn3FPBp1APVQNXUtRAd1rQ9OiQ4kr6qRltYhNOFLIBAI7EQ4qMOJllrw8gPP7lO+VomZLN+adSYHEmdEUEPi5fGWQ9xBrW7Ud6uBaiYswJvqwZ7ibyiXa6X746C6oJO//ZjT9qRFB2KS4GR5w4DZIhAIBO6GcFCHE8219kdPQXYOA2Og5JCjLeodR445NePpDcEjh7yDWtWgs4wz7Q61v4pGvXFwR+v6KtDfnoAoWUN1gBqlmvQGtC0G6yn+tk5+0SglEAiGM8JBHU60H3NqLzFTXOSgloJfmOxUOpJhIDVV1agnvIcGKTjd4T+o61CLM+WI+IhJfV9DoZCjqAMkNWXRQLUSQU1Q+6HyVHJcIyZKCQSC4YtwUIcTLbX2NUi1J2YKVP0KLQP8o6nVOLb+1MxwcFAb9D128AOWCOuglpoqzpSbnPo7CjdyrOygmkyOsasHNFY0UM14eigZExnA8TKR4hcIBMMX4aAOJ/qa4geInSLflv7sKGtsw5FjTtujHiVHlJuqHb+2G9CkN9DcauxWpN+MuUZ10EpNSRKUHOyb/mlnIseBvkGuZ3UyZpF+ayl+kNP8IoIqEAiGM8JBHU70J4I6os1BHeg0v6NF+s2YO/lrXDwly0mYHc7emqTCzRHUwZrir8mVLzT6U39qxtwoNQBpfk2dHLG2FkEFuVGqrF5HbdMgfV0EAoGgnwgHdTjRnwiqf5jc/V4ygJ38JiM0lDkvxQ+uH+PqJMwOZ1hvKX5LBHWQpvjNDVJ9FehvT0SafFvm/EapsvoWAr098e9GozYlSjRKCQSC4Y1wUIcLBj20Nva9SQoGvlGqoVzWX3VGBDU0Ub4donWo1W3apr2l+P1VHnh7Ki1TpwYdxZng6Xtax7Q/+ARBcPyAaKFq6qyL9JtJiw4CEBOlBALBsEU4qMOFvkyR6kzMFHmG/UDVbVo0UJ0QQfXyhaDYIeugVjbYFkFVKBSE+assxw86ijPl7n0PL8esFzVuQLRQu9NAtZgR5E2wr5eIoAoEgmGLcFCHC32dItUecxq19Kd+GmMjztBAbc8Q7uQ3R0R7q0GVj/G2RFwHFcZWuWnPEfWnZiLHyWoVBuc67GX1LUT14KAqFAox8lQgEAxrhIM6XHBEBNWsMzlQaX5nRlAB1ElDtwa1QYePlxI/lfUax/ao/VWDs0mq/BgYWhzTwW8mchyYDLKT6iSMJolyrY7o4J7LL1KjAzmh0SJJktNsEQgEAndFOKjDBUdEUH1DQJ08gA6qBlCAf6Rz1lePgsZy0A29KFVVo56wXqZImQkLUA1OmaniTPnWkRHUqHHyrRPT/FUNOowmqccUP8gOqlZnoKRN1F8gEAiGE72HV5zE4cOH+eyzz9i7dy8lJSWEhIQwZcoU7r33XhISEizHXXPNNezbt6/L/ZcuXcqLL744kCYPbiwR1H40SYFch1qwp9/m2IS2FAIiwcNJb9P2nfwjJjrnHC6iqkFvmRLVG+EB3lQ16pAkCYVC4WTLHEhxpjye1Nzw5gjCxoDS06mNUmaR/p5S/CBLTQEc19QTG+LrNHsEAoHAHXGZg/rGG29w8OBBzj33XFJTU6moqGDt2rVcdNFFfPLJJyQnJ1uOjYmJ4d577+1w/9jY2AG2eJDTXCPf9ifFD7KDeuQTucM+wEmRTTPOmiJlxuKgnhp6DmqjjoheOvjNqP1VtLSaaNIbu5U9ckuKD8rRU0c61Z4q2Ul1poNqHnPaQxc/wJh2UlML06KcZo9AIBC4Iy77Nbr++ut54YUXUKlOR3mWLl3KBRdcwOuvv84zzzxj2R4UFMTy5ctdYebQwZLiD+7fOjFmwf6fIOWc/q3VG1oNBI903vpDWGqqukFvkSrqDXOnf3WjfvA4qDqtLKg/9kLHrx01Dgr3O37dNsp6GHPanmBfL2KCfTghGqUEAsEwxGU1qFOnTu3gnAIkJiYyZswYcnJyuhxvMBhobGwcKPOGHi21oArovxzPiEmAYmDqUJ015tSMd6Bc3zrEHFRJkqhs1PcqMWXG3OlfOZjE+kt/BiTH1p+aiRwnjzttcc6oUU19Cx5KRa8atSDXoQqpKYFAMBxxqyYpSZKorKwkNLRjnWROTg6TJ09m6tSpzJs3j1dffRWTyeQiKwcp/Zki1R7vAIhIdb6DatBDU6VzU/zQJjU1tDr5G/VG9AaTTRJTgKWZalCJ9ZsnSDmyg9+MeeRpRbbj10YecxoZ6I2HsvfShNToIHIqGmg1iu87gUAwvHCrfN6GDRsoKyvjvvvus2yLi4sjIyOD1NRUGhoa2LRpEy+++CIlJSU88cQTLrR2kNFS2//6UzMxUyBnh2PW6o6GMvm2mwhqcW0zv1l3iGBFC2/1J4imHgWnvu3HAu6HeWyp2sYufrW/edzpIHJQSw7KU5/8wx2/tnkqVdlRUDi+Nrk3DdT2pEYH0GqUyKtstNSkCgQCwXDAbRzUnJwcnnjiCaZNm9ah3vSpp57qcNyKFSu45557+Oijj7j++usZNWqU3ec6cuRIv+11NpmZmQ5dL6WiEBSenHDAuhHGMOIbNBz+cQutvhEOsK4r/jXHSAN+LWugvpPNWZV6nttVS4POhAl4deNOZsTY9oPfmegWb2K1JRzcuxPJs29ruBsnqmRHs6a0gMzMMqvHtH9/tRjk6NzhE6dIVpY730AHMLbwMK0+Izjp4M8JAJKJyR6+VB35FiZMdPhnMa+shtggT5vWNdW2ArB598/Uxw2eTn5HP2dDHfF82Yd4vuxjsD5fbuGgVlRUcNtttxEcHMxLL72EUtlz5cGNN97Ili1b2Lt3b58c1PHjx+PtbVt0yRVkZmYybZqDa+v2GCAswTHrRhrhyD+YGG6ENCfUAAIcKwJgzJT5HTrs1+0r4PHvjzAy1I+Pbp/KrW/t5u0jLaw6J4OAvjT4qHLh+BqmJoae1sAc5FQfKwOqmTU5nQkjuzbFWXt/+X2xBZ/gCKZNGwTPgSTB1jJIW+z4z4mZn8YTSRWF4PBz1G3YyuKEEUyblt7rseMNRn7/zVb0vhFMm5bqUDuchVO+v4Yw4vmyD/F82Ye7P186na7boKHLa1C1Wi233HILWq2WN954g4iI3iNy0dFy2reurs7Z5g0dHJnij54ACg/n1qFaxpzKNaitRhN/Wn+Ehz/9hdnJ4Xx+x1zSooNYPT0ITX0LL2w93rfztJeaGiKYx5aqbaxBhUE2TaqxEvQN8iQwZxE5Vk7xO3iKU6POgFZnIDLItgtkb08PksL9OV4mGqUEAsHwwqUOqk6nY/Xq1eTl5fGf//zH5mhoYWEhAGq12pnmDS0c1SQF4OUrdzo71UEtlQXT/cKoadRz7Zv7eHt3PrfMT2LN9TMI9pPVCFLDVKzKSODt3Xn8VFhr/3nMTs4QclAr22pJbe3iBwgL8B48DmpNnnwb6kwHNR2aq/HUVTt0WY2NElPtSY0O5Ljo5BcIBMMMlzmoRqORe++9l59++omXXnqJyZMndzmmoaEBvV7f5X7/+c9/UCqVzJ49e4CsHeQYdGBodlwEFSBmsuygOmtOuFYDAdEcL2/kwn/+SGZBDX9dOYlHlo3r0v38u3NTiQz05uFPf7G/29k3VJ5GNIQc1KoGPf4qD3y8PGy+T5i/ytJc5fbUtKkuOHKCVGfayj186x37viirs99BTYsKpKC6iUadwaG2CAQCgTvjshrUZ555hu3bt7NgwQJqa2tZv369ZZ+/vz+LFy/m6NGjPPDAA5x//vnEx8fT1NTE5s2bOXLkCLfccgtxcXGuMn9wYRbp7++Y0/bETIFD70JdIYTEO25dM9pSaj3DuPhfO/H39uTDW2cxJd66/UE+Xjx+4XhWv5fJmz/msvrMZKvHdYt61JByUKsbdTZpbLYnzF9FVqlzdD8djlkWLDSh5+P6Q2Sbg6rNc+iyZdq2Mae9TJFqT2rbyNMTZdpuPwMCgUAw1HCZg5qdLWsM7tixgx07OkoWxcbGsnjxYmJiYpg6dSpfffUVlZWVKJVKxowZwzPPPMOKFStcYfbgxDzm1FEpfjg9Uar4oMMdVEmSqNYUsF8bxuioAF67dnqvsjznjo/mnHFR/H3bCZaOH0F8mJ/tJ1SPgoI9/bTafahq1Fuko2xFHaCiqkGPJEkoHDk61BnU5EJgjFxq4iz8w8E/El+tYy9cNHVylNreFD8IB1UgEAwvXOagvvvuu70eExcXx8svvzwA1gxxWmrlW0em+KPSQeklp/nTL3LYsk16A7/7+DBPNWrwD5/Eh7fNtjlV/fjydM7+2/c88vkvvHPjTNsdLfUoOPKJXArh6b7qDrZS1aAnJsQ+yaxwf2/0RhMNOgOBPv2cNuZsqnOd2yBlJmocvlWOHeJQVt9CoLenXSNl40L98FN5iIlSAoFgWOHyLn7BAGBO8fs4MPri6Q3R4x3aKFVU08Ql/97NjiN5BCuamDdlgl11lCOCffndklR++LWS9T+V2H5i9SiQTFBb0Aer3Y+qRp39EdTBJNZfk+fcBikzken4avPBZHTYkpq6FrvS+wBKpYIxUaJRSiAQDC+EgzoccEYEFeQ0f8lPDmmU2nOqiuX/2ElRTRNvXiLXFiuC7B9zumpWApPjQnhi0zFqbO1KH0JSU5IkUd2ot78GtU2SqqrRzRul9E3QoHFug1QbdUGjUZp0aEt/ddiamvoWu9L7ZlKjAjghpKbcms8PFfPPHSddbUYXCqubuOeDQ6LJTjDo6DHPdPToUbsXTE/vXXxaMMA4o0kKZAf1wFuyYxdmZ2NSG5Ik8dbOPJ76MouEMD9ev3Y6yU2H5Z3djDntCQ+lgqcvnsAFr/zIU19m8fzKSb3faQg5qPUtBlqNkl0SUwDhbQ6t20dQzRJTA5Di31YezCXA8aM/MT02zSFrltW3kJxs/3jW1OggPjpQRGWDzvJaCdyLNbvy+KWolounxjIi2H2mfm09qmH9TyUsmzCCc9Lt/04VCFxFjw7qJZdcYnfDRFZWVr8MEjgBcwTVp+tUoX5hbpQqOdQnB7VZb+ShTw+z/qcSzh4Xxd8umyTXPx4plQ8ItD+CCjB2RBC3nDGKf3+bw4opscwZ3YtD4KcG7+Ah4aCapaLC7BDph3YpfnfXQrVITDnfQf2iUMUlQJ0mxyHrGU0S5Vod0cH2O5hpbY1SxzVawkcLB9XdMJokTmi0mCT4YF8h952d4mqTLGSVypH3vbnVwkEVDCp6dFDvvPNO9+/oFfROcw14B4HS9npOm4hIA08f2UGdcKlddy2oauLWdw9wvEzLb89J4Y6zRqM065vWmx3Uvn+Z3rNoDF/+Usojnx9h8z3ze65lVShAnTgkHNTqRrNIv31OjNlBrXZ7BzVPvnVyBLVc28K3JaBTeWGoynPImlUNOowmqW8p/jYHNVujZW5vF1yCAaeguonmViMqTyUf7C/g7oWj8fRwjwq6bI0sH7cv17FDJwQCZ9Ojg3r33XcPlB0CZ+LIKVLt8fCSx57a2Sj17fFy7vngJwDWXD+Ds1IjOx6gLZUd337Y7OPlwf9dNIFVb+7lnztO8sA5vcwxV4+C0p/7fD53wTxFyt4mKR8vDwK8Pal0d7H+6lw52u3ocpVObM8qxyQpKVOEo2oocsia5ilSvUmmWSM8wJswfxUnRKOUW5LdpiG8+oxRvLz9JNuyyjl3vOujlQajiV/LGlB5KjlaUkd9SytB7q7SIRC04R6XeALn0lILvg5O75uJmSo7djZ0OptMEv/ccZIb/rufEcE+bLxrXlfnFOQpUoHRcmSzH8wbE87FU2P597c5vXdAq0fJXfzG1n6d09WYI6B9qVMMC1ANgghqrizQ7+TMzrasMkaG+tLiG426VUODAxpMNOYpUnZ28ZtJjQ4kWzRKuSVZGi1KBdx2ZjIjgn1Yuzff1SYBkFvZiN5oYvmkGEwSZObVuNokgcBm+uygHjp0iD/+8Y/ceuutPPfcc5SXlzvSLoEjcVYEFeQ6VH0DVPXcvaptaWX1e5k8v/U4F06K4dM75nQvpq/V9Ln+tDOPLhtHoI8nD396GJOpB7UB9SgwGeTJWIMYcw1qqL/9URK1v8r9m6QGQAO1WW/kh18rWTw2ilb/aOIU5RzX9H/KVlm9/WNO25MaHcivZdqe38cCl5BVWs+oiAD8vT25YkY8P/xaSX5Vo6vN4lhbZPeqjHi8PBTsFWl+wSCiRwf19ddfZ+bMmVRVVXXYvnHjRlatWsXHH3/M999/z1tvvcXKlSu7HCdwE1pqnZcSbd8o1Q0ny7Us/+dOvsku54/nj+Pvl0/GT9VDdYm2tF/1p+1R+6t4dNk4DhbUsnZfDzqnQ6STv6pRT6CPJ96e9tcbh/l7u3eTlMkoR7md3CD1w68V6Awmzh4XhWdQDGpFA78Wavq9rqa+BQ+lwm4JMDOpUYE06Y0U1TT32xaBY8nW1Fsa2S6fEYeHUsH7e12vq5yt0eLloSA9JpiJI0PYmyt+owWDhx4d1L179zJ+/HjCwsIs2wwGA8888wxKpZK//OUvbNiwgbvvvpvy8nLefPNNpxss6APNNY7XQDUTPga8/Lt1ULcc0bD8Hzupb25l7c0Z3DQvqefGO0lyaAQV4OKpscwdHcZzm7MtUawuWBxUx04OGmiqGvV9liEKD1BZIrBuSX0xmFqdHkHdllVGoI8nM5PUeIbI78Pywv5roWrqdEQGeuOh7Ft5wulGqf5HcwWOQ9vSSmF1M2NHBAFyCcfisZF8dKAQncFxQx76QnZpPckRAag8lWQkqfmlqI4mvdBDFQwOenRQc3JymDBhQodt+/fvp6qqissvv5yVK1eSkpLCnXfeycKFC/nhhx+caqygjzgzxa/0gBGToPhgh81Gk8TzW7NZ/V4mo6MC2Xj3PGaNCutmkXbotNDa6LAIKoBCoeD/LpqA3mjizxu60fYNiAIvv0EfQa3uwxQpM2p/uQZVcsDgBadgvnhwoki/0STxTVY5C1Ij8fJQoveTHdTGsv5LTZXVt/SpQcpMStRpqSmB+2AeoGCOoII8MKSmqZUtR/ofee8P2RqtxXGemaTGYJI4mF/rUpsEAlvp0UGtrq5m5MiRHbYdPHgQhULBokWLOmyfOXMmRUWO6XYVOJDWZjDqnBdBBYidCprDYJSvzFtajdzw3/38c0cOV86M46PbZtkuXK1t+0IPjHGoiYnh/vxm0Rg2H9Hw9bGyrgcoFHIUdZA7qFUNertF+s2EBXhjMEnUN7tphKWdBmpmfg3fn6hw+Cl+KqyhqlHP4nFRAOj95FuppqDfjntfp0iZ8ff2JF7tx3HRKOVWmHVG09ocQYC5yeEkhPnx3h7XNUvVNukprWuxOM7TE9V4KBUizS8YNPTooPr6+tLU1NRh2y+//IJCoWDixIkdtgcGBmI0ujadIbCCeYqUsyKoINehGlqgIhuATzKL+P5EBX9Zns7TF0+0rx5S238N1O649YxRxKl9u//RUCcNege1skFvt0i/GbNjW+mu406rc0HpBcEj+cumY9z5/kGHj2/8+lg5nkoFZ6ZEAGBQhWJQ+hBhLOt37WdZXUufO/jNpEQFigiqm5FVWk+Qjycx7V5bpVLB1Rnx7M+rcdnrZXaczRHUAG9PxscEiUYpwaChRwd15MiR7N692/K3TqcjMzOTlJQU/P39OxxbWVnZoVZV4CaYp0g5UzeyXaOUJEms3VvAuBFBrJqVYP9algiq42pQzXh5KDkzJYIDedW0Gk1dD1CPkoXgbZDMckdMJomaJr3dIv1mzI6t20pN1eRBSDytkoJjpfVoWwx8/lOxQ0+xLauMWaPCCPZtU0FQKGgNGkmcooKs0r7XfjbqDGh1hn6l+EFOI5+qbHR5baPgNNkaLWkjgrrU1l86LQ6Vh5L3XSQ5Za5VThtxuvRgZpKanwpraWkV7x+B+9Ojg7p8+XK+++47nn32Wb777jv+8Ic/0NDQwHnnndfl2IMHDxIfH+80QwV9xBxBdWaKPzRJFk8vOcShwlqySutZNSuhb1PILBHUKMfa2MbsUeE06o38UlzXdad6FBj1UF/ilHM7m7rmVowmqV81qID7NkrVyBJTJ8q06A0mPJUK3tmV77Ca2dzKRk6WN7B4bEdtXq+wJEYqKsjuRyTMLNLflzGn7UmNDsRoksgpd72EkUC+KDyu0TK2Xf2pGbW/iqUTovn0YLHDI/22kF2qJcxfRUS7psmMpDD0BhM/F9YOuD0Cgb306KBefvnlTJo0iTVr1rB69Wq++OILxo4dy7XXXtvhuIqKCn788UfmzJnjVGMFfaC5TZjZmSl+pRJiJkHJId7bk0+AtycXTu5jDalWA6pA8O76he8IMkapAdhzykod1iCXmjJLRPU1xW/u/ndLqSlJguo8CE3klyL54uLWM0ZxvEzrsJTltrba5EVjO14ceaoTiFdW9qt7vqyu71Ok2mPu5D8h6lDdguLaZhp0hg71p+1ZNSsBrc7Axp8H/qI3W1NP2ojADoGCGYlqFApEml8wKOjRQVWpVKxdu5aXX36Z++67j7///e98+OGH+Pp2bHipqqri/vvv54ILLnCqsYI+YEnxhzj3PDFTkMqOsPVwIRdNiSHAu8cput2jLXFK/amZ8ABvUqIC2J0zBB3UtshnX1P8oX7mCKobOqjNNaCrg9AkDhfXEejjyd0LxxDi58U7u/Mccoqvs8pIiw4kTt1pgERIPEE0UFjS945sTT9F+s0khfvj5aHoVzRX4DjMQvhpViKoANMSQkmNCmTtAGuiGk0Sx8u0pEV3dJyD/bxIiw4SjVKCQUGvXoSHhwfnnHNOj8ekpaWRlpbmMKMEDmQgmqQAYqaiMOpJMuZxdcaZfV/HPObUicweFcZHB4rQG0yoPNtdowXGgIf3oHVQq/sZQVV5Kgny8XTPFL9ZYkqdxC+ZdUwcGYyvyoPLp8fxxo+5lNY1264UYYWaRj0H8qq5a8HorjtD5FpqY00+TXpDz0MmuuF0ir9/DqqXh5LkiACHTLYS9J/sUi0KxenIdmcUCgVXz4rnsfVH+bmwlklxIQNiV15VIy2tJkuDVHsyktR8sL+g6/efQOBmiHfnUKelFlCAT7BTTyPFTAbg/PAyq1+KNqMtdUqDVHtmJ4fR3Grkl+LajjuUykHdyV/ZTwcV5AizW6b42ySm9EHxZGvqmRAbAsgpVJMksa6fEaodx8sxSVjkpToQItfWx1LBibKGPq1fVtdCoI9nn5zbzqRFB/bZDoFjydbUkxjm3+PrumJKLH4qD9YOYLNUdmlXbVYzGUlqWlpN1uvwBQI3osdvy4cfftiuxRQKBU899VS/DBI4mOZa8AmSBfWdyO5Kf9KkAJaE9qPWyjJFyrkR1JlJstrE7pwqpiWoO+5Ujxq006TMkU9zqr4vqP1V7pnib3NQs3XhtBoLmDhSvuCKU/uxKC2S9/cVcOfC0X0a8Qrw9bEyooK8GR9j5UKuLYIap6ggu7SeyX2Igmn6KdLfnpToQD7/qYT6llaCfLwcsqagb2RrtN2m980E+nixfHIMnx0q5pGl4wj2c/5rlq2px0OpYHRkQJd9M5Pk77x9udVMS3CiuotA0E96dFA/++wzFAqFzV2ywkF1Q1pqnZ/eB9buK+QqRTKzdSf6vkhzjdxF7+QIqtpfRVp0ILtPVXHXwjEdd4YmQc4O2VnuiwqBC6lu1BPi54WXR98TI2EBKvIqm3o/cKCpzoOAKH4uk53nCbGnHclrZyeyLWufPFZ3cqzdS7e0GvnuRAUXTYlFaW0MqZ8aSRVAklTZ59pPTb2u3/WnZswO0QmNlumJ6l6OFjiLJr2BvKpGLrLhPXd1RgLr9hXy6aEibpjr3FG9IGugjgr3x8er6wVbWIA3oyMD2Jtbxe1nJTvdFoGgr/Sab/L29ubss8/m4osvFnWmg5HmGqc3SJXXt7D1qIYrE6ag1LwrT6/y6kM9oBNF+jszOzmM9/cWoDMYO0bd1ElgaJYjuUHOdZQdTVWDvs8SU2bU/t5k5tc4yCIHUpMLoUn8UlRLqJ8XI0NPv7/mjQ4nKdyft3fl9clB3XOqiia9kbOtpfcBFAoUIfGk1NawqY9aqGV1LYweHd6n+3Ymta3xJVs4qC7luEaLJHXUGe2O8bHBTIoLYe3eAq6fk9g3CT47yNbUMyW+++hoRpKa9T+VYDCa8OzHBa3AvTlWUk+ryU1HV9tAj+/Mzz77jEsvvZTvv/+eG2+8kZtuuonNmzfj6elJaGio1X8CN6O51ukR1I8OFGIwSYyZcgZIRtAc6dtCFgfV+Y7hrFFh6Awmfi7sVIc1iDv5qxp1hPexg99MeICK6kY9Jnf7UqvJA3USh4vqmDAypMMPvFKp4JpZCRwsqLVIUNnDtqwy/FQezB7Vw6CRkHjilbJYv726q0aTREWDrt8aqGZign0I9PYUUlMuxhxNH2djzf3VGfGcLG9wusRTfUsrRTXNjO3Bcc4YFUaDzmCZNiUYelRodVzwjx9Zf3zwaib36KCOHTuWRx99lB9++IG//vWvhIaG8uSTTzJv3jweeOABdu3aNVB2CvpKS61TI6hGk8S6fYXMGx1OVNpseWPJob4tZp4iNQCRy1lJYSgUdJWbGswOqkMiqCpMEtQ2tzrIKgfQ2gL1JbQGJfBreQOTRnatE71k2kj8VB52S05JksS2Y+WcMSbCajrUQkgCYYYy6ltaKW3TNLWVqgYdRpPksBS/QqFgVGQAORWiUcqVZJfWE+DtSWyIbdmiCybGEOTj6XTJKfNo1bHR3TvOGW11qEJuauiSranHaJLYU2Tf95U7YVNsX6VSsXTpUt588022b9/O6tWrOXLkCDfddBMLFy5kx44dzrZT0Feaa5065vTb4+UU1zZzdUa8HPkMiOqHg9oWQQ1wfoo/2M+LcSOC2H2qstOOOFB6DkoHtbpR368OfpDr08DNpknV5gMSRYoojCapQ/2pmWBfL1ZMiWXDzyXU2KFCcKS4Hk19i/Xu/faExKMyNBBEo92C/WaJKUc1SQGMjggQ06RcTJZGS2p0oPW6ZSv4qjy4ZNpIthwppdKJn69sszZrDxHUqCAfEsP82HNKCPYPVcwXKrm1Bgqr3bCvwAbsLj6Jjo7m9ttvZ82aNcyZM4eSkhKOHj3qDNsE/UWSnN4ktXZvAZGB3vIPvEIBMVP6F0H1DQUvx/2Q98SsUWEcLOg0l9rDU+7aHmQOqtEkUd2ktziYfSXcPO7UnaSm2lQVjjbLUZ+JI0OsHnbt7ER0BhMfHSi0eemvs8pQKmBhWmTPB7ZJTcUpKuxOi2rqHKOB2p7kSH809S1oW9wo0j2MkCSJ7NL6Xjv4O3N1RjytRsmu96i9ZGm0BPt69Rqxz0gKY39etfuV8wgcQrZGi4+X7OJ91TYlb7Bhl4Oq1+v54osvuOmmmzj77LM5cOAAy5Yt61XIX+AiWpvkrngnpfiLaprYcbycK2bEne4cj5kClcdB14f0o1YzIPWnZmaPkudSHyqo7bhDPWrQOag1TXokCcL6m+IPcMNpUm0SU/tqg4kI9CYqyLoTnhodyKxRat7dk4/Rxh/dr4+VMT1B3XtpRKgsNTUpsI4sOxulyhw0Rao9oyNk+aBTFSKK6gpK6lqob+l+xGl3jI6U36Pv7y1wmmOYXVrP2E4jTq0xM0lNXXMrx0Ut85DkRJmW6Qlq4oM82Xq071PwXIlNDuovv/zC448/zvz583nggQeoq6vjkUce4ccff+Svf/0rKSkpzrZT0BecPEVq3b4CFMDlM+NPb4yZApIJNIftX1BbOiAd/GZmJKlRKmD3KSt1qNW5cgR6kNDfKVJmzGNSqxvdKMVfkweqAHZpFEyMDe7xh/fa2YkU1TSzI7u812WLaprIKq1n8bheoqdgiaBOCqi3W2pKU9+Ch1LR7+h2e5Lb9C1FHaprMKfRx9nQwd+ZqzMSKKpp5vtfKxxtFiaT1KbN2rvjnDHqtB6qYGhhNEmcKJNLUGbGenMgr9q9yrZspEcHdc2aNVxwwQVcdtllbNmyhYsuuogNGzbwySefcNVVVxEYaP+HUzCAtNTKt06IoOoNJj7cX8TCtMiOTQIxU+TbvqT5650/Rao9wb5epMcEs8eag6rXQtPgaSAw17T1t0kqtE1EvNKdIqjVuRhDEsmpbGSClQap9pw9LoroIB/etqFZ6pus8rb72HBR5BMC3kGkqKo4VdHQsSykFzR1OiIDvfGwsVbRFuLVfngqFZwsFw6qKzBfpKRE2f8buCQ9mvAAFe/tcXyzVGFNE016Y48d/GZGhvoRG+IrGqWGIAXVTbS0mkiNCiQj1geTJKuVDDZ61EF99tln8fHxYdmyZSxcuBBPT0/y8vLIy8vr9j4i3e9GmCOoTmiS+vpYGZUNOq7OSOi4IyASgkba76CajNBQNqARVJD1UP+7M4+WVuPpLu72nfz+jtGudDbmCGp4P6N0nh5KQv28LOu5BTW51PklIkkwqZv6UzNeHkquzojnr1+f4FRFA6Miuk7SMbMtq4zkCH+Swv17t0GhgJAEYqjAJMHJ8gbGW2nWskaZA6dImfHyUJIY7i8iqC4iq7SeOLUvgX2Y5KXyVHLZ9Dhe/S6HktpmB9tlHnFqW+lBRpKa73+tQJIkp2uzCgaO422NnKnRgbQqZKWJrUfLuHxGfC/3dC96FepvaWlh06ZNfPHFFz0eZ36DZ2VlOcw4QT8xR1CdkOJ/b08+I0N9OSMlouvOmMn2O6iNlbKG6gBGUEGuQ33t+1Nk5tcw1yyk3t5BjZs5oPb0FXPNaH8jqOY1qtwlxW8yQU0+RX6zAGxyCq+YGc/L23/l3T35/OmCdKvH1Le0sudUFTfOs2OqT0g8oRU5gOyg2OqgaupbLDWjjiQ5wl9EUF1EVmm9zU6gNa6cGc+/v8vhg/2FnOnAWQvZmnqUCtsjuxmj1Hx6qJicikarY1EFg5PjmgYUChgTFUBWuYJz0qNYu7eABp2BAO9e3T63oUdLn3766YGyQ+AMLBHUEIcue7K8gd2nqvjdklTracuYKZC9SXbwVDZ+6ZUfk28HOII6PTEUD6WCPaeqTjuoIfGgUA6qRqmqRj0KBYT69d9BDQvwdp8mKW0pGHUc04URE+xDRGDvEeKIQG+WTRjBJweK+O05qfhb+UL+7ngFrUaJs8f2Ii/VnpB4vE59i4+Xwq5O/rK6FuY5aIpUe0ZHBvBNVjmtRlO/xtsK7KOl1UhuZSPLJvT9YjpO7cdZKRF8sK+AueeEOMy2rNJ6EsP98VX1oOnbjplJ8nCKvblVwkEdQhwvqyde7YefSv7uW5IezZqdeXx3vIJlEwfPhMQeHdQVK1YMlB0CZ9DcNrLSwRHUdfsK8PJQcNn0OOsHxE6Tb1+eYv/iQfaPquwPgT5ejI8N7ijY76mS9VAHk4PaoEPtp3JInWN4gIoTZW4SmWvr4N9fF9xr/Wl7rpmdyOc/lfDZoWJWzUrosn9bVhlh/qoex0F2ITQBRWsj0yMkm7VQG3UGtDqDw1P8AMkRARhMEvlVTcK5GEB+LWvAJMFYOzv4O3N1RgI3v3OAQxodGQ6yLVujZXyM7Z+TxDA/IgO92Zdb3bVcSzBoydZoSW0XRZ+RKCuVbD2qGToOqmCQ01ILKMC7f1+kHZZsNfJJZhFL0qO7j2YlnQkrXpMbjezBO/h0k9UAMntUGG/+eIomvcFyxTnYpKaqG/s/RcqM2l/lPh2fbRqo++qCuSIjxOa7TY0PYXxsEO/szuPqjPgO9XWtRhM7sstZkh5tn0Pf1smfEdLAW3leNtXtmUX6HTXmtD2j23XyCwd14MjSmIXw+/e9emZqBMG+XuwpamG1A+xq1BnIr2ri0qkjbb6PQqFgZpKavaeqRR3qEKGl1UheZSPnt4vweygVLB4byeZfNOgNJlSegyPj0qODWlJSYveCMTExfTZG4GCaa+X0vtJxb8ZNh0upa27t+WpbqYRJlzvsnM5mdnIYr36XQ2Z+DfPHtNXUqkfB0U9da5gdVDX0f4qUmTB/b2qbWzEYTXi6OnVck4uk8KBUCmOiHRFUhULBtbMT+f0nh9lzqprZyWGWfftzq6lvMfQ+PaozIfJ7fnxALTVNAVRodUT2Ehktq3P8FCkz5gawk+UNLLFeaitwAtmlWny9PIhX+/VrHS8PJYvSIvnqSIlDyjTMeqb2Os4Zo8LYdLiUguomEsJsaBgUuDUny+UIf2qnGukl6dF8dKCIXTmVnJVqg7SeG9Cjg7pw4UK7r6hEk5Qb4YQpUmv35pMc4c+sUQ6s7Hcx0xNC8VQq2J1T1dFBba6Bpmrwc//HWtmo63H2tj2EBaiQJKhparWp5tOpVOdS7z0CQ7On1RGnPXHhpBie+jKLd3bndXBQv84qw9tTyfwxdtaFhsglLaM8q4GRZGm0vTqoGieI9JsJ8PYkOshHdPIPMFml9aREBzqknOac9Gg+PVTM/txq5vSzTjnb0sFvn/TVrCT5+21vbrVwUIcA5hGnqdEdsypzR4fjp/Jg69GyoeGgAnh7e7NgwQLUavf/kRZ0whxBdRBHS+o4VFDLY+ePG1KpIH9vTyaODO4o2K9u6+6uyR0UDmp1o2MjqOY1Xe6g1uRRoowiXu1HiJ0NYD5eHlw+I443fsiltK6ZEcG+SJLEtqwy5o0OP13OYfOCweATQrRJ1hPMKq3nTGsqFu04neJ3zvje0ZEB5IhpUgOGJMn1x0vSHdPMeWZKBCoP2HpU028HNau0nkBvT0aG+vZ+cDtGRwag9lex91R1930FgkHDiTItKk8liZ0uNny8PDgrNYKvj5Xx5EXjHarL7Cx6/IZesGABP/zwA19//TVnnXUWl1xyCWeeeSZKB6SMDx8+zGeffcbevXspKSkhJCSEKVOmcO+995KQ0DF9fPDgQZ5//nmOHTtGQEAA5513Hg888AC+vvZ9EIcdzTUOjaCu3VuAt6eSS+yocRosyGn+UzTqDHLXt0VqKvd005eb0mo0UdvU6tAaVKCtDtXFwzhqcsnWz2RCsn3RUzOrMhJ47ftTvL+3gAfOSeVEWQOF1c3ccdbovtkTmoB3QxEjgn0s04R6oqyuhUAfT/udYRtJjvDnfweLRf3gAFGu1VHT1Gp3lLI7fFUeTI7y5qtjZfz5wvR+vYbZmnrSbBhx2hmFQsHMRDX78oRg/1AgW6NldESA1fKsJenRfPmLhkMFNUxPdP/AS4+e5r///W++++477r33XnJzc7n99ts588wz+etf/0pubm6/TvzGG2/w9ddfM2fOHB555BEuu+wy9u3bx0UXXUROTo7luKysLK6//np0Oh0PPfQQl156KR9++CH33Xdfv84/LGipdVgEtUFnYP2hYi6YFEOwn/3i1O7OrFFhGE0S+/Paxv6FJsq3g6BRqqbJPObUMdHO8LZIbJWrxfqba6G5hqwWNRPtTO+biVP7sSgtknX7CtAZjHx9TJ5JvSitjymukHioLSAtOtCmkaea+hanpPfNjI4MoEFnoFzrJk1tQ5ystouS/nbwtycj1ofSuhYOF9X1eQ1JksgutW3EqTVmJqkprG52+OAAwcBzXCOPOLXGgrRIvDwUfHVscEyV6jUUGhYWxs0338wXX3zBBx98wFlnncW6detYunQpV1xxBZ988gmNjfanmK6//nq2b9/Oo48+ysqVK7njjjtYu3YtBoOB119/3XLc3/72N0JCQnj33Xe58sorue+++3jsscfYsWMHu3fvtvu8w4rmWodFUD87VEyj3mhVsmcoMD1BjZeH4nSa38tXlrwaBA6qWbM0zCkRVBfSJjGVL0XZJTHVmWtnJ1LZoGfzLxq+zipnUlxIr7Wj3RKSALUFjI0O5GR5A3qDqcfDNfU6p6X3QZaaAoRg/wBhvijpj0h/Z6bFyGNwtx7V9HmN4tpmtDoDaTaMOLVGxihzHaqIog5m6ppa0dS3dOugBvl4MTs5nK1HNUiSNMDW2Y9dufrJkyfzl7/8hZ07d/LMM88A8Mc//pE1a9bYfeKpU6eiUnX8QU1MTGTMmDGWCGpDQwO7du3ioosuwt//dD3F8uXL8fPzY/PmzXafd9ggSW0R1P6POZUkibV78kmPCWJSPxwFd8ZX5cHkuBD2nKo+vXGQSE2Zx5I6ykEN8VOhVLhBBLUmD4ACKcruBqn2zBsdzqhwf17Z/is/F9Zyjr3d++0JSQBDM5PUrRhMUq8NSmV1jh9z2p72UlMC55NVWk9MsI9Ds0iBKiUZSep+OajmBqm+RnbTooMI8vFkX2517wcL3BazkkN3DirAkvQo8quaLMe6M30qJj127BgHDhzg119/RZIkQkJCHGKMJElUVlYSGio7VcePH8dgMDB+/PgOx6lUKsaOHSsUA3pC3wgmg0NS/AcLasnWaLk6I2FI17nNGhXGkeI6tC2t8gZ10qBwUCvbIp2OSvF7KBVt405d7KC2aaAqwxL7NPPcjFKp4JrZCZZmosX2TI/qTJsW6lhfeQhGVg91qEaTREWDzqkp/ohAbwK9PUUEdYDILtX2W//UGkvSo8mpaOzz62h+H6baOOK0Mx5KBTMSZT1UweDluFmjtwcH9exxUSgUsPWI+6f5bXZQKyoqeO211zjvvPO46qqr+Pbbb7nqqqvYsmULq1atcogxGzZsoKysjPPOO89yToCIiK6dshEREZSXlzvkvIOZX8u0rHx1F8Wda4daauVbB6T41+zMJcDbk+WTh7bG7ezOdajqUdBYATrnX2mu/6mY1e9mYjLZn3axOcWvb4R3LsK3Pqfn43ATsf6aXKoJZszI/k8+uWTaSPxUHsSpfUmJ6oeofZuDGiuVo/JQ9liHWtmgw2iSiHJiil+hUDAqMkBEUAcAncFITkWDwxqk2nNOunzR1NcoarZGS0KYn9WxvraSMUrNqcpGytuUJwSDj2yNlkAfzx4viiMDfZgaH9qviP1A0eO7ubW1le3bt/Ppp5+yc+dOQNZGfeihh5g/f75DuvnN5OTk8MQTTzBt2jSWL18OQEuL/EHpXAoAsvyVeb+9HDlypO+GDhCZmZk2Hff2z/Xsz2vi92t3cf+sEMt237ocxgE5JdXUYtta1vilXMemwzVcnOZP9pGf+7yOM7H1ueoVo4SnEj7fdYzgxiJCaiAZOLbzS5qD+9j1bdNpJZ7aXElZo5G3t+xmYpR9kdCjOVqUCjiZdRhlDxFu/+qjpJ3aQaBPKpmZyT2uqTLpKSjTOe657QNJuYfJM0UQKmkdYsfqqQF4eyg4ePCgXfdrf26loZkpQGnWHmIDz2Hv8SIyo5qs3u9ktRyJb6woIjOzss9290aosoXDxXqXvladcSdbHEVerVzW4dNS6fDHV3LyGKNDvfh8/ylmBdnfLHUor4K4IM9+2RWsk9+vH2w/wNw491bIGYrvL0dwMKeKkQFdv+M6P1/pwQbeOazly+/3EuXvvgNFe7Rs/vz51NXVkZKSwu9+9zsuvPBCS/rdkVRUVHDbbbcRHBzMSy+9ZHF8fXzkqwC9vmuqUafTWfbby/jx4/H2drG+Yw9kZmYybVrv0kaSJHHfN9+i8lCys7CF+89PYlpCm3REbhN8D8npU2FU32SSWlqNPPD370kI8+Opq+fj4+XRp3Wcia3Pla1MPbSb3EajvGasCjL/zLgob0h3ntTU9uwyyhrLUChgX7U3Nyy171yf5B9G7W9gxvTpPR/480kAVM3lvT5nCccPklVS79Dn1l6avyknX0pi6ezxTHOAJEpfHorV99d3YYz0NzItOZrvTlR0+xxVHtUAVcyZks7EkSH2n9xGZmpP8m3+cVLSJ/arFMJROPoz6S7kZRYBVSydM4nRkY6LopqfrxX1J3l+63FiR6fb1VjXrDei+WQLK2eOYtq0lD7bMclo4okfvqKCEKZNG9/7HVzEUH1/9RdJkija+BXLJ8cwbdoEy3Zrz1dYQiPvHP6WEkUES6eNGmhTO6DT6boNGvbooNbW1uLj44PJZOKTTz7hk08+6fFECoWCDRs22GWcVqvllltuQavVsm7dug7pfPP/zan+9lRUVBAZOTimITiLbI2WguomHl02ltd/OMUTG4/x2R1zUSoVp1P8/WiSemX7r+RVNbH25gy3dE6dwexRYbyy/VfqmlsJDm0T63dyHerbu/KJDPRm2cQRvLM7n7J6+xprqhr0FmmoHml7HKrm3ktjwl1dg2rQ49NUSqE0iyUxjq/56xch8VCbT1piIJ9kFlHZoCPcSv1vmROnSLVndFsn/6mKRibFhTj1XMOZbE29VQF0R7EkPZrntx7nq2Marp2daPP9fi3XYpL6L33l6aFkWqJaNEoNUkrrWtC2GGyqQ04M9yc1KpCvjpVx83zXOqg90WOOPiYmBrVaTWNjo03/Ghrsq4PS6XSsXr2avLw8/vOf/zBqVMcnKiUlBU9Pzy7etV6vJysri7Fjx9p1vqHG1qMaFApYPjmWB89N4+eiOj7/qVje2Vwr3/axSeq4Rst/vjvFxVNjmdvPCSeDidnJYZgkeV473gEQEOVUBzW3spHvTlRwdUYC185OxGiS+HB/oV1rVDXqbRPpt8NBVft7U9fc2quMktOoLUCBhC4wwWki933GLDXV5hCYO6g7o6lrwUOpcFjzWnckRwqpqYEgW6MlJcq6ALojGB0ZwKgIf7trA09rs/Y/qpuRpOZ4mdaiDCIYPJwecWrbhcqS9CgO5FW7vtegB3r85t++fbvTTmw0Grn33nv56aef+Ne//sXkyZO7HBMYGMjs2bNZv349t912m0Vqav369TQ1NXHuuec6zb7BwNajZUyLDyUi0JuLJsfy9q48nt2Szbnjo/HrR5OUySTx0KeHCfTx5NFl4xxqs7szOS4ElaeS3aeqWDwuqk1qqn9DKXri3d35eHkouDIjjshAH+aPCWfdvgLuOCvZ5h/C6kY9422RYbI4qF0zEp0xj02tadI7VSapO6TqUygA32jn1f72mZB4OL6ZtCj5+yhbU8+8MV0v4jT1LUQGejt9pGC82g9PpUI0SjmZrFItZ6X2PNq2vyxJj+a1709R26S3ebRvVqlWbgAM9ev3+TOS5FKafbnVnDveMeNcBQODRWLKRiWHc9KjeXn7SbZllXH5jHhnmtZnnHMpaAPPPPMM27dvZ/78+dTW1rJ+/XrLv23btlmOu++++6iuruaaa65h3bp1vPjii/zlL3/hjDPOYM6cOa4y3+UUVjeRVXp6JrRSqeCxC8ZRVq/j1e9OyWNOFR7gbf9V9dq9+RwqqOWP549z2PjMwYKPlwfT4kPZndMmWO1ELdQmvYGPMws5b/wIIgNlJ/DqjHhK61r49njvTqSZygadbRqobY/DS18DrT03GFqmSTW4JpJSV3ICgKiEVJecv0dC4sGoI0yqJSLQm6xuIqjl9boBce69PJQkhvuLCKoTqdDqqGzQOXSClDWWpEdjNEl8k2W7Qk22pp7U6EC5tKufTBwZgrenUqT5ByHHNVpG2KHRmx4TRGyIL1uPuq/clMtyZ9nZ2QDs2LGDHTt2dNgXGxvL4sWLAUhPT2fNmjW88MILPP300wQEBHDZZZdx//33D7jN7oQ5DWSWJwGYlqDmgkkx/Oe7HG6dWkmATzDYqVuqqWvh2S3HmTc6nBVTYh1q82BhdnIYL247IUcx1Enw01rQN4Gq/xGK9nx+qARti4FrZ5+ezrVobBSRgd68tzdfjuD2gt5gQtti6N1Bba6B5mqIHAflx6C+GMK67+RX+8tp6apG16R/aotOoJK8GZ3Us9qASzCPwW1L82drrGuhaupbLPWhziY5QjiozsT8Go91gsRUeybGBhMd5MPWoxoumTay1+MlSSJbo+W88f2XYgNQeSqZGh8qJkoNQuQSFNvfnwqFgiXp0by3J58GnYGAfkiUOQuXWfTuu+/afOz06dP54IMPnGjN4OOro2WkRQeS0Klg/8FzU/nqqIbjuYVM60OD1J83HKXVaOL/Vowf0qL8PTFrVBiSBHtzq1mibquLrsmDKMeVO0iSxDu78xg3IohpCadfJy8PJVfMjOeV7b9SWN1EnLpnp9gyRaq3OkdzmULifJscVHOK31W1aK1VpyiUIhkb44aTy9q0UOWRp+NZs7MKg9HUpSSjrK6FeQNUvz06MoBvssppNZrwclKN5HDGXGfc04QeR6BUKjgnPYqPDhTSrDfiq+q5ObWsXkdtUyvjHFB/aiZjlJqXvvmV+pZWgtxAFULQOwajiZzyBs6wUmrUE0vSo3hrZy7fHi/n/Inup3MuvskGIZUNOvbnV3NOetcaoZGhftx6xigaaitpVNoXvdl6VMOWoxruWTymi+M7nJgUF4yPl1JO85sdVAen+fflVpOt0XLdnK7Tua6YEYcCWLevoNd1zFOkei3FMNufNF++rSvq8XBzRLbSRSl+X20B1d6x7qkeERwn39bmkTYiEL3RxKnKxg6HNOoMaHWGAavfTY4IwGCSyK+yrskq6B9ZmnoiA72d3vAGcpq/pdXE97/2XuZjbpBy5HSrmUlqJAkO5Ik0/2Ahr6oRvdFk9wXU9EQ1Yf4qt03zu19MV9Ar246VIUny1Y81Vp+ZTO7uZo7XBTHZJNlUm6RtaeVP64+SFh3ILW4sOzEQeHt6MD1BzZ5TVXD2RHljde/Tl+zhnd35BPt6ceGkrmUUMSG+LEyToyj3Lk5B5dn9daQ5wtmrzJQ5gpowV76tK+7x8CAfLzyVCqpdkOKXTCbCDKXkhWcM+LltQuUH/pFQW0DaGNkxyCqt75Be05glpoJtcGiqcuDIp3DGb+0uyTEzuq2TP6eiwfJ/V3Agr5qvTzX1SXPWWdQ06vnP96e4YkYcieF9u/B21ohTa8xMUhPs68XWoxpLj0F3ZLWVHjgysjs1PhSVh5IXtp5gw08lNt9PoVCwalb8aS1uwYBhnmhnT4of5BG3i8dG8cUvpegMRrw93SsgICKog5CtRzWMDPVlXDdfmP7eniT46SlqUbHhZ9u+YF7YepwybQtPXzxBpAiBWaPUZGu0VJv8wD8CKk84bG1NXQtbj2q4fEZctym8VbPiqWzQ9yo5Y64RtSmCGhgDfmpaVSFQ33MEValUEOqvckmTVElhHr7o8Y50ww5+MyHxUFtAckQAXh6KLiNPy+pkB9WmCOre/8COJ6Gm72oRoyLcQ2rqpW9+5a1D9RiMLpIn68TRkjou+MePvPpdDg98/HOfRgm3Gk2cLG9wiIyTLXh5KFmUFmkp2eiJ7FItsSG+Dk3F+3h5cOXMOBr1Bg4V1tr8b9PhEt7Zne8wOwS2c1yjxUOp6NPF6TnpUTToDKcbg90IEUEdZGhbWtl5soprZndNDbcnwKTF0y+UJzZnc056VI9akgcLanhnTz7XzU5kSrzjJ4UNRmYnhwGw91QV50WOhfIsh639/r4CjJLEqoyEbo85Y0wEI0N9Wbs3nwsmdV8bZHYge69BPWUpV9D7RuLVS4of5DS/K8T683KOEgtExKcN+LltJjQBig+i8lSSHBFAdmnHRimNPSL9eT/It2XHTpeU2EmAtzx/25VSU3qDiQN5NbSa5JSjI6ct9YXPDhXx8Ke/EOKr4pb5Sbz+Qy6fZBZx2Yw4u9Y5VSGnT8faqC/pCM5Jj+bTQ8Xsy63uUYc6W1PvFGWBx5fbP0nqqtf3iBITF3FcoyUxzK9PJVFzR4fjr/Jg69Eyzkp1r+FHdofK9u/fz4svvsijjz5KTo6c9mxsbGT//v3U11vvZhU4ju9OVKA3mnpO/UgSipY6Jqcmoqlv4bXvu6+fbDWa+MOnvxAV6MMD5/R9TN5QY+LIEHy9PNh9qgoi06E8G0z9jwrpDSbe31vAgtRI4sO6b4BSKhVclRHPnlPVnCy3LmMEski/l4eCIJ9erjWrT4Fanoyl943oNcUPEB7g7RIR55rC4wDEjHJjDd6QeLmO12Rs6+Tv+BqdTvH34qA2VspNa9Dvi6DRkQHkuDCCerioluZWI0C30lsDQavRxJ83HOW+D39m0sgQNt49j4fPG8v0hFCe3pxFjZ0XXeYO/rQBiqACnJkSgY+XsscMis5gJKeiccAiu72REOZHQbVwUF3B8TItaX28gPLx8uCs1Ei+PlaGsQ8ZBmdis4NqFta/9tpr+c9//sP//vc/ystlrTZPT0/uvPNO3n//facZKpDZerSMMH9Vh87vLui0IBmJiY5h2cQRvPpdDiW1zVYPff2HU2RrtDyxPN0t5ni7C14eSqYnhsp1qFHjoLURavP6ve7mI6VUNug6SEt1x2XT4/DyULB2b/fNUtUN8hSpHhUXdFpoLLdE51p9I3ttkgK5bMAVEVRdRQ5GlKjUvT9HLiMkHkytoNWQFh1IaV0LtU2nn6uyuhYCfTx7n4KV96N8q/CA8qP9Mik5wp+cikYkyTU/MrtzqlAoQKk43bwz0JRrW7j69b38d1ceN85N4r2bM4gI9EapVPDkivHUtxh4dku2XWtmlWrx8lAwKnzgant9VR6cMSaCr46WdVuW8GtZA0aT1GfHxNHEq/2pbtSjbWl1tSnDiia9gYLqJrvrT9tzTnoUlQ06DhXUONCy/mOzg/r666/z1Vdf8dBDD/Hll192+BL09vZm8eLFfPfdd04xUiCjMxjZkV3O4rFRPU+naTdF6qFz0zBJ8JyVL+W8ykZe2vYr56ZHW1UEGO7MTg7jRFkDtYFttZAOSPO/szufxDA/zhjT+0Sa8ABvzh0/gv9lFtGsN1o9pqpRR5i/jRJT7VL86LXQUtfj3cICVFQPcA2qySThoy2g3isSPN14SERIm/Ncm29pnmkfNdTUt9ie3vfyh9GL5BR/PxgdGUCDzkBZvWu0a3efqmJsdBAjAz27RJQHgoMFNVzwyo8cLq7lpSsm89gF4zrU06dFB3Hj3EQ+2F9IZr7tHerZmnqSIwJ6bFZ0BkvSo9HUt3C42Prn1PwcD2RktycS2jJCIoo6sPxa1oAk9a9RbkFaJF4eCrvH7Dobmz9xn3/+OcuXL+e6664jNLRr9C45OZnCQvtmiAvsY1dOFQ06A0vG9yLg3lwr3/qGEKf245b5SXz+UwkH210dSZLEI5//gspDyZ8vTHee0YOY2aPkOtTd2jZnsp8OxJHiOjLza7hmdqLNU1+uzoinvsXAxsPWm90qG/QWzdJuMUtMmR1Un7Y6IxukprQ6AzqDdefYGeRWNRIjadAHuXH0FNo5qAWWFGt7wX5Nva739D7IEdSE2RA9EapOgqHvzmVyxOlO/oFGZzCSmV/D7OQwEkI8u9TkOhNJkli7N5/L/7MblaeST2+fy/LJ1oeM3Ls4heggHx757IjNjVxZpfXdNqQ6k0VjI/FQdu80ZJfW4+OlJNFNJAHj2zSbC0Qd6oBy3Hyh0g8HNcjHiznJ4Ww9WuayDIw1bHZQi4uLmTJlSrf7g4KCqKvrOSIj6B9fHdXgr/JgTnIvYrzNbY6oTwgAd5w1mohAb57YeMzy5vvsUDE7T1bx+3NTbfshHYaMjw3GX+XBzoIWeXpQP1Ow7+7Ox9fLg0ttmBBjJiNJzejIgG7T/NWN+t6nSFkcVHMNqtlB7bkO1dx4NZBi/b8U1RGnKMc70g0nSLUnuO01rC0gIsCbMH+VRcwd5BR/rx38DeVQkQ2J8yByLEjGfqlFtJeaGmh+KqhFZzAxa1QYCcGelNS1UNfk/FRvS6uRh/73C498doQ5yeFsvGse42K6dyb9vT350wXjyNZoeduGjvPqRj1l9TqXRClD/FRkJKn5qjsHVaMlNSqw52zaAGKuqc8XEdQBJVujxcdL2etQl95Ykh5NQXUTx8tcVz/eGZsdVH9/f2pra7vdn5+fj1ot9M+chdEk8fWxMs5Ki+y9U8+c4vcNAeQv5d8vSeWnwlo2/FxCdaOev2w6xtT4EK7uoZN8uOPloWRGklqW34hM71cEtbZJz+c/FXPRlFiCfW2v9VUoFFydEc/PhbUcsZLqq2rQWcaSdktNrqzb6S3/yFoc1F6kpszSVQMpNZWdX0K4op7AEWMG7Jx9wssHAkdATT4KhYK0EYEWTUqjSaKiQdd7it/cvZ94BkS1ZTH68R6LCPQm0NvTJVJTu09VoVTIGp4JwfL7u7sRsI6ipLaZy/+zmw8PFHLXgtG8df0MQvx6Lws5d3w0Z6VG8LevjqNpkwPrDkuDlIvqPJekR5NT0Wj1Nc3W1LtN/SnIUbhQPy+R4h9gTpTJI077e6Fy9rgoFArYesR9RPttdlCnTZvGxo0brYZ/6+rq+N///kdGhpsKaw8BDhbUUNmg71W4GWiX4j9dinHJ1JGMjw3imc3ZPLb+CNoWA09fPNHmVPNwZfaoMHIqGmkMGdOvFOxHBwrRGUw2NUd15uKpI/HxUrJ2b8eIT0urkUa90YYUf24H+aJWH7XclNNLit8s/j+QjVJVhXKttEfYIBgWERIPtfJrkhYdxHGNFqNJorJBh9EkEdVbZiL3B1AFwohJEDYalF79itIrFApGRQa4JIK6O6eK9Jhggn29SAiRG8Oc2Si1O6eKC175kZyKRv5zzTR+uyTV5h9ohULB4xemYzBJ/OWLni8IzFFxV9V5ntM2jKVzmr9c20Jlg95t6k/NxIf5ixT/AGOOpPeXiEBvpsWHulUdqs0O6urVq8nLy+Paa6/l22+/BeD48eN88MEHrFixgubmZm699VZn2Tns+eqoBpWHkgWpvTfXtG+SMqNUKnjs/HRK61rYdLiU1WcmO32u9FBgVlsd6jFjXJ9TsEaTxLt78pmZpO6TZqE8cSqG9T+VUN+uQ9bsONqU4m+vr6nwgKCYXlP85sjsQElNGU0SuvK2coTQxAE5Z79oE+sHuf5LZzCRV9Voicr1HkFtqz/18AQPL4hI7b/UVETAgEdQW1qNHCqsZdYoOYOm9lES6ufltEapt3flserNvYT4efH5nXNtu2jvREKYP3cuGM0Xh0v5/kT3I0WzNfWE+auIGIARp9YYEezLpJHBXdL8FsfZjSKoAAlqP/KrG3s/UOAQqhp0VDboHPZbfk56FMdK6yl0kyi4zQ7qhAkTeOWVV8jNzeXhhx8G4Nlnn+XPf/4zOp2Of/zjH4we7caTXwYxkiSx9WgZc0aH2SYF1VwLSk9QdSyen5mkZuW0kYwdEcRdC8VrZQvpMUFEBXnzTGZbdKYPKdhvj5dTWN3MdbMT+2zH1RkJNOmNfH7otFNZbYtIf2sz1Bdb6k8tBMX23iQVMLAp/pPlDUSbSuU/OtvrjoQkyM+h0WC58Mgu1dom0l9fClW/QuL809six/a7ES850p+yet2ASv0cLKhBbzBZhlsoFArSooPIcoKDWtfUyp83HmX+mHDW3zWvX2NdbztzFEnh/jy2/ggtrdYbAbNKtYwdEdSzjJuTOSc9mp+L6iitOy0VaC49cBcNVDPxaj9Kalt6nYAlcAzmBilHOahLJ4wg1M/LJfKC1rBLN+Oss85i+/bt/Pvf/+a3v/0t999/P6+88grbtm1j3rx5zrJx2JOt0VJQ3cQ542yMFLTUytFTK1+qz106kU13z+vTxInhiKeHkg9unU1DQCJ6yYMjh3bZ3eX4zu58ooK8Lem6vjApLoQJscGs3VNgOX9l25jTHlP8NXnybecJRcEje61BDfT2ROWhHLAvq8NFtSQoyjH6hIJP8ICcs1+ExMtRdW0JoyMD8FAqyNbUU9bmoEYF93DhYNY/TWrvoI6TXxNziU4fGG3p5B+4KNaeHLn+dEbi6R6EtBGBnGgreXAkR0vqkCS4cW4SAd79G4To7enBX5aPJ6+qiVe/y+my32A0caJM26/uaEdgjhB/dfR0bWB2qZYRwT421dwOJPFhfhhNEsU11nW3BY7F3NDkKAd1ZKgfBx49m8lxIQ5Zr7/YLeymUqlYsGABN998M7fccgtnn302vr6+zrBN0MbWoxoUCrmI2SaaaywNUp1RKBRu0/U5WEgK9+eTO8+gTJVAec5P/OGzI+gNtkUIcisb+e5EBVfNTOigydgXrs6I53iZlsx8WaXBMua0pxR/pw5+C8GxUF/S43QshUIhi/UPUIr/l+I6kjzKUfZx3OeAExIv39bk4+Plwahwf7JK69HUteCpVBDeU/Na3g/gHSzLS5kxN0r1I82fbO7kH8A0/55T1UyIDe6Q3RkbHURzq9HhDTPH2upae+rUt4d5Y8K5YFIM//o2h7zKjk59XlUTOoPJonPrKkZHBpAc4d+hNjBL43rH2RoJaqGFOpAc12hRO7gExZ38g4FVHhb0ia1Hy5gWH0pEoI1vwubaDg1Sgv4T6ONFbNp0pvuWsm5fAave2EulDY7bu7vz8fJQcGWGffO/rXHh5BgCvT15b4/cmFNtiaD28L7opIFqIWgkGPXQ2H39nby2asBkpg4X1ZHsWYFCnTgg5+s3oae1UAHSRgSR1Zbij2ybXtQteT9AwhxQtstkRI6Vb8v7nuaPV/vhqVQMWKNUs97IocIaZrWl982Ym3cc3Sh1tKSeqCBvwh34g/zosrGoPJQ8tuFoh+zI6Q5+1zuC56RHsze3mppGPXqDiZPlWpc7ztZIaNNkFVJTA0O2RktKVIBLS1Ccic0O6qJFi3r9t3jxYmfaOiwprG4iq7TevkYAc4pf4FCUUeMI0pfxz4tH8XNRLcv/sZOjJd1r/zbqDHycWch540cQGdh/rVk/lScXT43ly180VDfqqWrQo/JU4q/qoVyj+pR8sdL5gsWs42mD1FTlADiorUYTJ0qriTBWQOggqD8F2clH0aFRqri2mZPlDT138NcVy69L+/Q+QHAceAf1y0H18lCSGO4/YI1Smfk1tBoly1ALMylRgSgVOFyw/2hJHekxji3/iAry4YFzUvj+RAWbj5yOUmaXavFQKvpV5+oolqRHYzRJbM8u51RlA61GyS0c585EBnqj8lRSUCUapZyNySTxa5nW7RrlHInNDmpMTEyXf1FRUbS2tlJcXIynpycjRoxwpq3DEnNaxy4Htbm22xS/oB9EjgNgWVQtn6yeg0mSuPTfu/nicKnVwz//qRhti4Hr5jhOa/aqjAT0RhMfHyikqlFPuL+q56vnzh38ZoLbJu30KjXlbYnUOpMTZVrCjRUoMQ6OBimQR7EGxVikpszThn4pruu5Qcpcf5rYyUFVKBzTKBXhP2AR1N2nKvFQKpjerv4UwMfLg6Rwf4c2SrW0GsmpaCTdQen99lwzK4FxI4J4YuMxGnQGQI7+Jkf4u0W9/sTYYKKDfNh6VGPp4O+LIoizUSoVxKv9yBdSU06nuLaZRr1xSKvx2Fxl/u6773a7b9OmTTzzzDM8/vjjDjFKcJqvjpaRFh1omdJhEyKC6hzaHFTKjzFhxmzW3zWX2987yJ3vHyRbM5r7FqdY0rqSJPHu7nzSY4KYGu+4covU6EBmJIby/r4CksL9Udsy5jTOij5xcFvJQa9SU6oB6eI/XFRHgqKtCWSwRFBB7uS3pPjlHwpJoucpUnnfy5/PqPFd90WOg6OfyYv0MW03OjKAb7LKaTWa+l333Bt7TlUzcWSw1YaltBFBHC6qddi5zDqzzhg76umh5P9WjOfif+/i71+f4NHz5WlT0xLco1RKqVRwTnoUHx0oZESwDyoPJaPC3WPEaWcS1H6iBnUAyHZwB7874pBvr/PPP5/Fixfz7LPPOmI5QRuVDTr251fbFz01mUQE1VkEj5QbW9pSsJGBPrx/SwaXTR/JK9tPctt7mZboy77carI1Wq6dneDw+qBVsxLIr2pid04VYT014hh0coTUWgTVNxQ8fWUJqh4IC1DRpDfSrLcuw+MoDhfVkaqqlP8YLBFU6KCFGh3kY5kS1qODmvuDPN5UaeXrN3KcfIGptR6Vt4XkiAAMJsnpUaxGnYGfC2u7pPfNjI0OpLC62WGSV0dL5HIBR6f4zUyJD+WKGfGs2ZXH3lNVFNc2u5UQ/pL0aFpaTXycWcSYqAA8nXzx0Vfiw2QH1Z1mug9FjrfVSKc4QKTfXXHYO3zs2LHs37/fUcsJgG3HypAk7JMn0tUDkoigOgMrKVhvTw+evWQif7pgHNuzy7n4XzspqGrind35bQL7sQ4349zx0aj9VegMpp4lpmoLQDJZd1AVCjnNX1fY47nMnehVTk7z/1Jcy5SAWvDwhgD7hdddRki87OQbW9v0P+Ufi+juJKZqC+SSgM7pfTNRbVH6fqT5zTWTzq5DPZBfg8EkWYZZdMacgj7uoDT/sdI6Ar09iVM7TzXmwXNTCfb14s73DwKyGoG7MDNJTbCvF016o1vXHcar/WjSG6kcwBHJw5HjZQ2MDPXtt9yaO+MwBzUrKwultYiAoM9sPaphZKivfSkt8xQp0cXvHCLHyhHUdtEBhULBDXOTePuGmZTV67jwnz+y5aiGy2fE4dtTA1Mf8fb0YOU0ucnJNompbmSbgkfalOIHO8X6m6p7lK/qTEurkeMaLaO9KuUJUoPpeyQ0Qb4IaKvlNTtl3UZQLfWn3ehGW8pI+j7ydJRFC9W5DuqeU1V4eSiYnmj9u8bcZe6oOtSjJfWMjXGuaH6In4qHz0uzOFfuFEH18lCyKC2SCGrdTqC/PQlhZqmpYdQo1VgJRsOAnvK4pt4tG+Ucic2/BPv377f6b9u2bTzxxBN8/PHHQqzfgWhbWtl5sool6dH2fSGbRb5Fit85RKV3m4KdNyacDXfNtWjSrcpwXHNUZ67KiMdDqSAmpIdoUm8OatDIXpukIoPkx5Jna1euVgN/GwvrLrdZcP5gWyf4CFPp4Ervw2kt1LY0/6S4YBQKOYpkldwfwFd92hHtjJ8aAkf0Sws1wNuT6CAfpzuou3OqmDQyBD+V9QhOTLAPgT6eDunkN5oksku1TmmQ6syl00YyM1FNeIB37+NqB5hVESfZ73MHc1SnXG1Kt8Sr26SmhkujVFM1vDQZdvzfgJ1SbzBxqqJxSNefgh1NUtdcc41VR8lcZzJnzhz++Mc/Os6yYc63xyvQG032z5k2R1BFit85RLZLwQbFdNmdEObP+rvmUlLbYl9jm50khPmz5Z75xHXnCIHsoHoHgZ/1FCzBI6GhDAx6uSPdCukxwYwI9uGTzCKWT7ahXKH8GBha4Nev4LWz4Iq1pwXou2Ht3gJCfD0JbCqC0IW9n8OdCDFrocqd/BdOiiU1KoiRoVZeF0mS9U+7qz81EzkWyvoeQQU5ze9Msf4GnYFfiuu4/czkbo9RKBSMjQ6yNHP0h9zKRppbjU6rP22PQqHg9eumU92odzt9ySnF7wMwtnEP4J6yjnFqXxSKYSTWf+hd0Gsh879w5oPg5fyLmlOVDRhM0pCuPwU7HNSnn366yzaFQkFwcDCJiYkkJQ2yyIebs/WohjB/lf1dpCKC6lwsYupHYYz1Hwg/leeAaCeO6e3LqfqUHJHs7kc2OBaQ5GhwqPVor4dSwcrpcbyy/VcKq5t6dogBqtpGRl72Dnz5O3hjMSz/B4y/xOrhmroWthzV8JuMIBSHGgdfBDUoFhQelgiqh1LR/ZSj2ny55nfuPT2vGTkO9r0upww9+lZflhzhz/8OFiNJklOcrP151RhNErOTu7n4aSNtRCCfHizGZJJ6HlzQC2a9YWd08Fsj2NfL0vDmNlSeRJHzDQAKc6mIG+Lt6cGIIB8KhkME1WSE/W+CfyQ0lsOx9TDpcqef1lzX7c61yI7A5m+/FStWONMOQTtajRLfHq/k/Ikj7B871iyPwRQRVCfhgBTsgFF9CkZM6n5/UDst1G4cVKBNpeBXPj5QyP3npPZ8zqqToAqAsRfK8lYfXQef3AjFB2Hx410crvf35mOSJK4YbYRDyDWogwkPT/l5bHNQeyT3B/m2u/pTM1HpYNRBTS6Ej+mTWaMjA2jQGSir1xHd09CAPrInpwqVh7JXCbWxI4Jo0OVTVNPcr4zCsZJ6VB5KxkS5XjTfZRx4E5ReMOFS+OUT0DeBynlZmv4Qp/YbHtOkfv1avvC8dA1sfxIOvDUgDmq2RouXh4IkN5UacxSDqBth+PBLuZ4GncH+9D6IJqmBIHJcv1OwTsdokJ2mnubam7VQe5GaGhnqxxljIvjoQBEGYy/NT1UnISxZjtoGRsN1G2HGLbD7H/DuRXIzQRt6g4n39xWyMDWSKEPbBJ/BpIFqJjQBavJ7Py7vB/CPgIi0no8zR+n78R5LdnKj1O5TVUyOC+m1CdDcxJGl6V8d6rHSelKiA5yu6+q26Brg0FoYt1zORphaoXCvq63qloSwYSLWv+81OWAx9gKYfgMU7hmQ34bjGi2jwgNQeQ7tz4PNEdR//OMfdi+uUCi488477b7fcGdvcQv+Kg/mjO45fWaV5lrwUIGX86RYhj1R42Dva/1KwTqdukIwGXpxUGNPH9sLV86MY/V7B/nuRAWLxvYge1Z1EmKnnf7bUwXLXoDYqbDpPvjPmXD5uxA7lc1HSqls0HHtnEQo+QZQ9BjJdVtC4iFnR8/HSJLcwZ84r3cB/og0UCjlet70i/pkUnupqbmjw/u0RnfUt7RypLiOuxb2Ht1NiQpEoZDHhvbpghu5z+FoST2Lx0b26f5Dgl8+Al0dzLxV/v5ReMgXPMkLXG2ZVRLC/KlsKKJJb+i2iW7QU3kScr6BBY+AhxdMvhq++YscRV32V6ee+rgbDZFwJnY5qOZaps4CvD1tFw6qfRhNEvtLdJyVFoW3Zx8kisxTpNysuH9IETlOTsFWn4KIFFdbY53eOvgBVP5ypL0XqSmARWOjCA/wZt2+wu4dVINejtpOtJLimnyV/Lx9uAreOheW/ZV39iaTFO7P/NHhcCRXTpV79jB4wF0JiZfreA267u2vPiVHqntL74N8cake1a9ITESgN4Henk6JoO7PrcYk0a1Af3v8vT1JUPuR3Y8Iqqa+hepG/YA0SLklkiTXJEdPhLiZ8nd7zJTTkmVuiFnFoqC6aejWSe5/Qy65mHqd/LefGtJXwM8fyuVM3s4pR9G2tFJc28xVGfFOWd+dsNlB3bhxIw8++CAeHh5cf/31JCfL3ZsnT57kv//9LyaTieeeew5fXxG56w8HC2qo0/Whe9+MmCLlfNqNPHV7B7W3lHnQyF5T/CBrMF46bSSv/3CKsvoW6zqfNXltgwG66eyOmQy3fgef3AAb7mKFYRGGc56Rm2dqcgdf/amZkARAkmt5w7p57Hnm+tMzbFuzn2UkCoWCUZEBThHr351ThcpTyZT4EJuOHzsiiKx+SE0ds0yQGqKOTm/k75S/ay78x+nAQ9J82PWKnPp3kiPUH8wOan7VEHVQdQ3w0/tyhiOw3QX79Bvh8Afwy8dyyt8JnCgzN0gN7Q5+sKMG9cMPP0SlUrFu3TqWLVtGWloaaWlpnH/++axbtw4vLy8++OADYmNjO/wT2MfWIxo8lbAgNaJvCzTXiAYpZxORejoF665U58qjTAN7udAJju1VC9XM5TPiMJokPj7QTUlA1Un5Nmx094v4h8GqT9kRfiWrPL9hVfbtUF8qO7fqRJvscDssWqg91KHm/QgBUbY3PUWOky8y9H2v4xsdEeCUCOruU1VMjQ/Bx8u2DE9adBD51U006vomZH60pB6F4rTw/7Bj32typmPCpae3Jc6TS3gK97jOrh6wiPUP1TrU9iUX7YmbCVHj5TS/k0a9HtfIn+mhLjEFdjiomzdvZunSpXh6dg26enl5sXTpUrZs2eJQ44YbkiSx9ZiGCZEqAn36KHHSUisapJyNA1KwTqf6lGxjb6Uewb2L9ZtJCvdn1ig1Hx4oxGSy8uVrcVB7KCsAalpMrNYs5/2EJ/CsyIL/nCHrsQ7GBinoItbfBUmSO/htqT81EzUOkKAiu89mJUf6U1avQ9vS2uc1OlPX1Mqx0npmj7K9rjVtRCCSdDryYy9HS+pIDPMf0iMdu6W+BLI2wZRrOvYVxM0CpafbpvlD/FQE+XiSPxSnSbUvuRg5o+M+hUKOnGoOy8olTuC4pp4Ab09Ghg79bLXNn/iGhga02u6/YLRabY/7Bb1zoqyBwupmlk3rR6Sgubb3LmFB/3H3Tv7qU7ZF64Ji5YsaG1OFV86M554PfmJXThXzxnRyUqpOgl94rxdIHx0oRGcwMfW8G0BxNnx4tawh2FO9rDsTFCM7C9118ledhAYNJM63fc3ItuEG5Vlyg1kfGG3p5G9kclxIn9bozN7cKiSJXvVP22OeZ5+t0TKlF1kqaxwtqWeSg+y3mV3/gBNb4NoNrh29e2CNXDYz46aO270D5GZEs3SZG5IQ5k9BdbOrzbALvcHEtW/t5WBBbbfHzOAYaz2P8bDxNv73Rzkop1TA5dPjePT8cXhNvBy+/pMsCzZyWrfr2M33L8Cpb8nWPUJKVIDbDZFwBjY7qGPHjmXt2rVccMEFxMd3LM7Nz89n7dq1jBvXzfg+gU0cyK8GYEJkD/PVe8PcJCVwLlHpkLXRPbUITUa5pjNlSe/HtpeaiuhF4xRYkh5NiJ8X6/YXWHFQc3pO7yM3Ab63N5+MJHVbbdo4uGUHHPkE0pb1bq87ovSQI9HdRVDN9adJNtafgjywwNOnX2UkyW2d/DnlDQ5zUHefqsLbU8mkONsblkaG+uKv8ujTyNO65laKapq5cuYANoRIkuxcVJ+CUztg9KKBO3d7DDrIXCN/jq3VZyfOgx//DjoteLtfujde7WcZsDBYeHdPPntOVXPlzDiCfa3/Dl/062s01wcRNuMqblTKtfhl9S28vTuf42Va/nX1NNQTVsLP62DJ/zkmo6n5BXY8BZKRKkUBMyaM7f+agwCbHdTf/va33Hjj/7d33vFR1/cff95dFtl7XUjCyA4zTAUHIojiqq0oFa2zdtja2jpaW39trVqLVluLG60L0TrKFBkOhoCsICOBBBICIZvs5DLu+/vjkwvZufG9lXyej4ePI3ff+3zffnL53vv7Hq/3HVx11VXMnTu3c3LUiRMn2Lx5MxqNhgceeMBuhg4HsouqCfH1JMrPiu59AKMRmmtlk5QjiOySgrUywmU3aouhvcW8iGRQF7F+MxxUH08d10/S887OQirrDYT5d+lar8wb9Mv8y9wyiqqaeGRBlwvsiGCYetfgtroywfH9O6gntwqtREsixFqd+H3YEKWPD/XFQ6shT8U61J0nqpiSGGKRwohWqyE1JpCjZy3PsDmlQari+Pkmw29fc56DemQVNJTDtLv7fj1xNmx9Bk7thKTLHWubGcSH+bLhcAlt7UY83EC/tqqhhec3HWN2UjhPXD+u7whlbTHs/gpm/ozfzJvY7aWLksN56KPvuOaFbbx15SJG730DDqyAmT+1zTBjO6z6heh7UNoZaThOStQ029Z0E8z+1EyZMoW3336bjIwM1q9fz7Jly1i2bBmfffYZGRkZvPXWW0yZMsWetg55sotqmDAy2PrQvaEGUGQE1RF07eR3NcyRmDLRdZqUmdw8LZ7WdoWP93Xp/jfUizR2f13sHfznm0KiA324PH0ALVV3JDih7yapTv3T2ZZLv0Vm2DSxzFOnJTHcj3yVOvnPNbRw9GytWfJSPUmNDuBoSW0vKcLBMEXgHCoxlbtWPE64GXLXmzeEwR7sfkUoYoye0/frI6cLmaOTXzvWLjNJCPWlzahwtqbZ2aaYxXObjlFvaOMPC9P7/w7ur+QCuH5SHB/8eCat7UYWflhDdegEdZqlvn0NivfBVUtR0DBec4KUoaiM0AcW3dZMmDCB999/nx07drBy5UpWrlzJ9u3bef/995k4caKdTBweNBjaOF5Wx4S4YOsXMY05lRFU+xM6SnTJu+LIU4sc1FhAY5bUlInkqAAmxwez4ttT5x2OqnzxOECK/0R5PV8fK2fx9PihNxEoOEE0erX2qLkrzxX1taMsqD81EZUunP7GKqvNGhPhp1oEddfJSgBmWOOgxgRS19xGsYXOypGztUQEeBMR4EB93Nz1YkTwnEfFTcWe1x13bhPFB+D0bhE97a8G1stXNOkUuGYdqmm07Sk3GHl6rLSOd3ed4ofTE/rvjh+s5AKYODKYVT+fRVJUAH8pmQmVxzHaUidccxo2/xnGzoXJt1HtN4px2hOkDAOJKbBy1GloaCgTJkxgwoQJhIVZMe2og7KyMpYuXcqSJUuYNGkSKSkp7NrVe3zbnDlzSElJ6fXf0qVLrT63q3HoTA1GBdtqxZqqxaPs4rc/KqRg7UbVCdB5n4+ODoTOU0hRWRBBBbhpWjwnyhv4tqDjpsgMiam3dxbiqdNw07SRFp3LLTB18vfcx079UyscVBVGno6N9OdUZSOtg42oNYNv8isZ4aljvBU30WkdX6iW1qEeKa51bHq/vhyKdkPKVaKuOPUq2PdW7xsPe/Ptq+DpJ6K4A5E4C85mQ7Pr1XomhIk58a4+8lRRFP6y5gi+Xjp+dfkAutaDlVx0EBXow8p7ZuAx/ntUK37s+/gZ6yTWFAXW/kZEbK96BjQa8j2SmKg7SaivlSo/boZTwxgnT57k1VdfpbS0lJSUgevfMjIyePrpp7v9d9VVbtpU0QfZp6sBGB9nQyqrWawhU/wOIirDdVP8IYnmdx9bIDVlYuH4GPy9PXh/d0fdZWVHBLWfqG2DoY3/7jnNleNiiAzoQ+Tf3TGNaO2ZDi7YKoYhWDOEoLOT34ZGqQh/2oyKKk6Cqf7UmvnfpohPTon5dajNre0cL6t3rIN6fAOgQMoC8fO0e0Rm6tBHjrOhsQq++y9MWDR4NmzUbOHAFH7jENMsITrQB0+dxuWlpr7MLWfr8Qp+eVkSoX4DNCgPVnLRBR9PHU8tmkZR/HVMqNvKnf9eS5GlkeSjq+DYerj0d53Xjz2towinWtTCDgP6bZJKTU1Fq9Vy4MABvLy8SE1NHbQ2UqPRcOSI+RfTjIwMdu7cSUhICJs2bRpwLGp0dDTXXnut2Wu7G9lFNcSFjCDM35sCaxfpjKAGq2KTZBAi0+DAu9BQKQToXYWqk5Y15ATqofSQRafw9fLgmomxfLT3NI9dnUFQZZ5QBPDsW5vv0wNnqDO0cevMRIvO4zb0JdZvNIr606R51o0eDogW2RAbHNSxHZ38eWX1nf+2hsp6A7mldVwzMdaq9wf4eDIydARHLIigHi+tp92oOLb+NGeduKGIHid+TpwtZPt2vyJmrTtC2mf/29DWDFMHjtQBEDdNZEsKtkLKFfa3zQJ0Wg0jQ3xdWqy/td3IX9YeYXS438DXJlPJxRVPmX3jr9FoGHftr+CFd5lRu55r/+3Lsh9ONq9EprkG1j0otFan/wQQCihbavXc6wEU7z/f4DqE6ddBve6669BoNOh0um4/q4m/v2UXzJaWFtrb24fkONUDRdVMNHN0YL/ICKpj6dooZU2NoT1QFBFBHX2J+e8JihOaj4pi0RfwzVPjeW/XKf6XfYZbK/P7dYoVReGtHYVk6gOZbOtn3FXxjwadV/dO/vIcaKy0Lr0P4ncRmQGl1juoozu1UG2rQ915QtTBWqJ/2pPU6ECLUvymBql0R02Qam2C/C0w6ZbzfwcajUjprn0ATu+BkVMHXsNWjO2iKSZhVsewhkHw9BF1qC7aKBUf5uvSKf53dhZyoryB12+bMnBmwNySi56EJ0HibH5WuZU1yg+45bVd/N81GdwyI2Hg9236k6hdv3kF6ISbdqqqkey2kRg9dWiL90PaQstscUP6dVCfeuqpAX92NNu3b2fixIm0t7czcuRI7r77bhYtWuRUm9SivM7AmeomfnRBom0LySYpxxLVJQXrKg5qXQm0NYkmLnMJihMRm8YqiyLB4+KCyIgNZMWuUyxpPo4m8/t9HrfrZBW5pXU8fcP4oSsurdWKCHLXCGpn/eks69eNTIPs9y2+eTDh7+1BdKCPzZ38O09U4uelY5ze+mhmWnQAm4+W0tzabtaY1MPFYmKOaa673TnxlfjbMaX3TYxfBBv/T0RR7e2gHv9c3ORc/hfz3zNqNnz5lLj+u1j/QUKoL3sLzqEoisv97Z9raOG5TceZnRTOnNTI/g80lVxMXGzdd+vUO/H88Ees+oGBn+4O59FPD5FTUstjV2f03Sx6apdozJvxs24ShrkltRjwwhCSwoji/Zbb4Ya4xey45ORkpkyZQmJiIufOneODDz7gj3/8IzU1Ndxzzz2DL+DiHOyoP7V5WkpTtRD37ifNKlEZ/yjxheBKjVKWdPCb6JSaKrK4VOGmafE8++kOND41/TZIvfVNAcG+nlanh92GnlqoJ78Wz4UMEi0ZiKh0aKkTvxtTGYGFjI30tzmC+s2JSqYkhtqkvpAaE4hREan7cV1r7Q99BGU5cPGDommvgyNna0mPCUSrdZBjk7sOvAJ6R7y9A4Rzsme5EF73H8CZsZXdr0BArGVDKxJnA09C4Q6XG3YxMtSXOkMb5xpbB67vdALPbz5OXXMrj141gKwUWFZy0RcpV4FfJL7Zb/H6bSt4ekMOL391gh35lUT2UKfQKa08Vf5zfHSR/KZgLoZXztcWl9Q0o9GA58jJcGyd1Tet7oRVDmpTUxPV1dV9atrFxqr/JfTSSy91+/l73/seixcvZtmyZdx8880EBFgmuXDokGX1dvZm/aE6tEBrWT57q04CsHfvXovXiT+dR5DOj++seK87Y81eqUWybzyak9+S6yJ7HnbqCxKB74obaanp36aue+ZbXU8akLf/a2rOtlt0vgSMpHiUAnD8nEJtj32obGzns0PlXJ3sx+GDByxa21Uw9/MV3+ZHcPkBDu7dC4qRCflfUx19AYU2fDb8zulIBfJ2rKImaqZVawTQyN6SJvbs2WNVFOtcczt5ZfXMjDJ/L/o6rr1OdDJ/tvMgLaPOR0XTv/gTI+oLqTn6BSemPIbRw5d2ReHw6WrmjBrhmL9vxcj4w6upC8/iZPZ3vV729p1JpvFlzqx+gpLkJaqffu/evXjXF5GZv4UzKbdTcuCg2e/VtGuZqPWifNd/Od0QrbptttBWLWTFNmzfS3KYeg6qrZ+J07VtvPVNBZePHkH9mWPs7U9lT2knc9syWsImcOx0E5y27ryxsZcTfWwFh7evZ15kFCOmB7HpRBO1tS3djlvU8hEj2wp5zOdhyuvbgPNNhb4aWJjkyxljOAlNVXy3bR0tvub9vp35HWkLZjuoRqOR1157jbfffpuKiop+jzt61P66kDqdjttuu41f/epX7N+/n4susmCEIJCZmYm3twN19Qbh+ezdJEdruXC6SB/t3buXrCwrZvjmeUBghHXvdVOs3iu1KJ0OB1aQNXmya9zNVq8FrQfjLlzQWbvUk157Vj8StsLYcB+wYi+LD26GYtBPupykmO4yLc98notCOb+5dhojHZWqVRGLPl+Nk+HUGrLGpYpIdmst4VnXET7Rhs9ncxJs/wVjAwxW/W4AjrQUsD7vMHFJmUQHWa6gsDq7GCjn+xdNMCvL09+eTTQqPLh5A43eoWRldZTH1JfB6kJImEXQqW+YtP8RWPwh+YYAmttLuWTiWLKyHCBLdnoPGKoInfFDQsf3tc9ZcOo/6Is3oL9xab9/W9bQuV/rPwStJ/qrf4fe0ijt0RlENR4nysWu/QFxdTy1/Wt8I+PJmqhOU48a1/x/vbEbP28Pnrj5wu7T8HqS+xk0leC98G9kZdhwzjER8Nx7jG/dB1mPkpUF9/c8piIPXvwEMq7nTz94pP+1ioPhu+cYF9oCZtjk9O/IQTAYDP0GDc3+K1u6dCnLly8nKSmJ+fPnExwcrJZ9VhEdLe4campcT//NEhRF4eDpaq7IUOHOt7laNkg5msiOFGz1KdtSuWpRdUKkgi35AvUNFw0+NUVWnfLi8Bpaz+hYXejBopjzzxva2lmx+xSXpUa6pXNqMcEdv//qIjHeFGyvTfYJFLWtNjRKjenSKGWNg/rNiUr8vT1slnvSaTUkRweQ03XkqalOd96fofEcfHgbvDaXoqn/Bhw44jR3HWh0QhC9P6bdA+/fLCZNpausKGOoF4ogGddbV0KQeBF88biol/QNVdc2GzDVD7tSJ/8XuWV8mVvOo1elDeycgnUlF30RHC/UPPa9BRc/1K2UBRDp+jX3ixK9K/428FqR6eJ6XbxffF6GMGZ/i61atYrZs2fz6quv2tMesykqEl+moaGu88doDaeqGqlubLW9/hREDWrgEK/zczW6dvK7ioNqSf0piAafQL1F06S6Et12htO6aN7be5ZFM86f+7NDJVTUtwxdaamedDqop4S8VMgo0YBmK5HpNk0s6yo1deHYcIvfvzO/kmmjQlWZp54WHcCGwyXnm2ZObhV1n9ETxE3V7evg3RuZ8eUPme3xS5IiFwy+qBrkroeECwZ27pLnQ1A87H5VfQf14Eow1A4qAt8vpka8gm2Qfo16dtmIj6eOqEBvCl1kmlRru5HH1xwhMcx38OtSRR7kb4ZLH+3tUFrD1DvhvRshZy1kXNf9tQPviZu1hc9BwCBjoD28RYPuMGiUMvuKU1tby2WXXWZPW/qkuroao7H7FBSDwcDrr7+On5+f249YPVBUDWDbiFMTTdUu18U55DFN+3EFwX5FsVwD1YQVYv0mNJX5KKFjyC6q5mgXGaH/7ChgVLgfs6xwitwSUxPTuZNQuE09ZYeodKg4Bu2tVr09IsCbAG8PqxqlSmubOVHRwEwrxpv2RWp0AOcaWymrM4gnCrYKx9AU8Y+ZAHdtokITxnKPv+F1+ENVzjsgVSfF32/KlQMfp9XB1DuEzTZEtHuhKMLpjZkgJKOsQZ8Fnr7CQXUx4kNdRwv13Z2F5Jc38Pur0gcfOPHta6D1hKzb1Dn52LkiG7Jneffn68vh899D/EyYbOa5YidBcbbQWh7CmO2gJicnU15erroBy5YtY9myZaxfvx6A//3vfyxbtox33nkHgC1btnDFFVfwzDPP8P777/PSSy9xzTXXkJuby29/+1v8/PxUt8mRZBfV4OOpJTnKehHtTmSK3/H4BIqoippfWNbSWCmiMFY7qFZEUI1GqMwnIjEDL52Wld+KzMZ3p2vYd6qaJTMSHNeF7Wz8I0WKLmeNENq2Vv+0J5EZYGyFiuNWvV2j0TA60p88K6Smdp6oBDBPXNwM0jo0TY+erYXas2JEbg9HXgmK44fGP1PoOw4+uQe+/rtw4uxFrvjuMUvoftKtQhj/W/Uyif6V2VB+VJQQWFvH7uEFI6efL5lwIeJD/VximlR1Ywv/2HScC8eGMTdtkDIKQ72IamZcp55qg1YnnN2TX4norIkNvxPnu/p586f/xU4CQ424GR7CmO2g/vznP+f999/n7Nmzqhrw/PPP8/zzz7NmzRoAPvroI55//nmWLxd3GcnJyYwePZr//e9/PP7447zyyitERkby0ksvcfPNFormuiDZp6sZpw+yPX1mbBfOidRAdTyRaa4RQbVGYspEoB7qzkK7hTOj64qhrYkR0cnMz4zm432naW5t561vCvD10nFDlgopbndBoxFRVJNoumoOqu1R+rER1klNfZNfSaCPB+kq1YKmRpsc1Lrz0b4eOrFldQYKGz3ZPvNlGHcjbHkcVv/C6gjyoOSug4g08/5u/MJg3Pche6W4CVGByIJPReYr8wbbFkqcJT4jDf03MTuDhDBfSmsNNLdaphCiNs9tMlNWCuC7D4QDOE1lGctJt4LWA/a+IX7O2yzONfsBiBh43Hs3YieJxyGe5je7BvXQoUPExsZy5ZVXcvnllxMXF4e2h7ev0WgGHFfaF7m5uQO+npmZ2UtmaqjQ2m7k0Jkalgw2VcIcTBdLGUF1PFHpolaprUVEMpyFLQ5qkB6UdqgvsaxusrIjEhA2lpuDR7I6u5j3dp1iVXYx38+KI2iECrVb7kRwvEjHh42FwJjBjzeH8GTxpWaDgzom0o+P9p2mtrmVQB/zfyffnKhk2qgwdCpFwYN8PYkN8iGnpBZqvwafIDHOsQumCVJpcREw6xWxp1uXivnjP3hT6JKqRdM5oR86637z3zPtbtHQdGAFzLjXtvPXnCG4ZBtccJ/t+tWjOtRsCrb1rnF0IglholGqqKqRpCgVf3cWkFdWx9s7C7lpWnxnFL9f1Ci56I+AKEhdKD4/sx+ANb+CsCSY/WvL1olIE9maM/vEDdMQxWwH9YUXXuj896pVq/o8xhoHdTiTW1KHoc2oUoOUnCLlNCIzwNgmnDVzxhPai6oToNFaJ+ge1CHlU3PGOgc1dAwzAsJICPPlyfVHaW1Xhk9zVFdMe2/L9KieeHiJLzEbykjGdnTynyhvYKKZ15vi6iYKKxvVuYHuQmpMoOjk122DhAtF6rMLh8+IOua0mAARlb7sD+IzufYBeONK+OGHEKCS3ufxjeLGbLD6067EThKOy7evigibuWnZvtj7hnCIptxp/Rpd7fL0E2l+F3JQTQoehZXOc1D/uvYovp46Hrg8efCDC7eLm8Fr/20f6cApd8CRT+E/V4vJcz9aKxqfLEHnIW7sZARVsHnzZnvaMSzJNk2QUqNBqlmsJSOoTiCqSye/sx3UoDjLL3bQfZoU081/X+UJ0ZwREINWq2HR1JE8/Vku00eFkhLtnC8jp2Lq5FcrvW8iMg3O7LH67WM6Ovlf/DKvs6t/MAoqRGPLzDHq1J+aSI0O4NixHPA6AVPv6vX6kbO1JIT5EtA10jvldvEZ/fBH8NpcWPIphPc9ucwicteBXyTETh782K5Muwc+vhtOfAFjrWweNtTD3jepiZpBsBoKIDpPiJ9xXuLMRUgwOahO6uT/6lg5X+SW8/srzZCVAiEtpUbJRX+MukhkWEoPweRbrb+ZjZ0E+98R5X09bvKGCmY7qHq9OiK7kvNkF1UT4uvJyFAVRpN2RlBlF7/DCUsSKdjSw85Nt1gjMWXCFDW1VGqqMg9Cx3RGkX6QNZL3dxfx00tVcB7ckYQLxZfP6EvVXTcqHQ5/DIY6q1Lc8aG+jI7wY/PRMjYfLTP7fanRAaRFq6tFmhYTyFk6xgP34cgfLq4lU9/HOZPnCRmqt6+HT34Md35u2xdzWwsc3wSZ11seBU2/VjS37H7VOgf1XAGsWAyNlZRO+B3Blq/QN6Nmw6b/EwMQ7DmS1QJC/bzw9/bgVKVzGqX+t/8MYX5e3HqBGTcBZw/CkVWi5MNeI8M1Gpj1a9jxT7j8z9avEzsJdr8smicjU9Wzz4VQbxyGxGKyi2qYMDLYqvGDvWiqFo8yxe94TClYG7QqVaHqhPXCzT6B4B1oeSd/ZR5Ej+v8MSLAm68fVNk5cydGToX77DBWMLJj8lJZjjiHhXjqtGx54BJ1bbKStJgAGrVHMXgG4R2V2e212uZWTlU1smhqP9OjYifCgqfh47vg29dhug1NLIXbxJCNFCtE2D28hSTQ1mfgXKFlGsgnt8IHt4rSgh9+SH2NikGFRFMd6lb7RQAtRKPRCKkpJ0VQ88rrSYsJxNtjkJsZRYHPHhFauBfeb1+jJv1Q/GcLXRulhqOD+sgj/Y/b0mg0+Pj4EBcXx5w5c0hMTFTbtiFNvaGNY2V1XJGpUi2VTPE7l6h0OP2t887fWCWi6NZGUEGkUC3RQm1vFZGgIT7NxCXoLCM5bJWD6kokhvnhrTvCSb+JpPaIXB4tFvWn6QM1soz7PmSvgM1/gtQrrR+GkLMOPEbA6Iute/+U22HbP2DP6+ZHwr59DdY/JIY43Py+KFNQc056zAQx+OCk6zioICL4x8rqBj9QZRRFIb+snh9MMWNc7tHV4qblqmfdI9ATniRqjov3w0T3VzTqiwEd1E8++cSsRZYuXcqPf/xjfvnLX6pi1HDg0JkaFAWzGxYGRUZQnUtkOhz6yOoUrM2Y9PBscVCD4qDWAgf1XKGIAoWNsf6cEvMIihdfRs6O0quAR91pRmrKeJsb6Bn3OdzhoA444lSjgYXPwr9nwLoH4eb3LDdCUYT+6Zg51qdyg+LECMx9b8Eljwy8TlsLrH9QNEUlzYMbXhMKBmqj84CEmS4n2J8Q5suWnDLajYpqihDmUFLbTENLO2MiBtFLbzPA54+K67i5YvnORqsTGYXifc62xG4M6KAO1hjV1NREXl4e7777Li+99BKpqanMnz9fVQOHKgc7GqTGx6l0kWquFtEAaxpkJLbTOfL0KIyc5vjzV6nhoOotu9hV5YvHsGFab+pItFrRKFV62NmW2E6H87SmLoklPV46XFxLuL83kYE+A68RkgiXPgIb/ygiX2lXW2ZDyXfiZuyShy17X0+m3QNHV4mb00m39H1MQwWsXAKndojU8WV/tG9TS+JsOP65GISgltSZjcSH+dLSbqSkthl9sJ1qO/sgv0zUvY4ZrDFw54uio37JJ+enmrkDsZNEVL69VZ1xrC7GgJXher1+wP/Gjh3LFVdcwfLlyxk7dizvvWfFnewwJbuohpGhI8zrKjSHpnOyQcqZdO3kdwYmDdSQROvXCIoT06ham8w7vosGqsQBRKWLz5c9pyo5gpNbafIMYXdDJOWmkacdHDlba/5QgBk/E/XP635ruWh+7npAA8lmTI8aiMRZQpNy9yt9/15KvoNXLhU3ft97DS7/k/07rk1d4S4URU0IFRHMQgc3SuV1lBWYZNb6pL4Mvl4KyQtERN2diJ0Ebc1QnuNsS+yCjeOLBJ6enixYsICjR90//eQoDhRVqyMvZaKpWqb3nUlQPHj5O2/kadUJUUNqS+dpoKmTv9i84yvzxE2Rb6j155SYT2SGuIFoUH/ktMNQFCjYSmPMdBS0QrC/A0NbO8dL6wZO73dF5yHGQ9aXwmYLu6Fz14pMh3+EZe/riUYjhPvPZsPpHjJghz+F1+cJjeTb18P4H9h2LnOJmQDeQVDwtWPOZwZdxfodSX55AwHeHkQEDBAI2vI4tDXBvMcdZ5haDPGJUqo4qADh4eE0NjqnS8/dKK8zcKa6Sb36UxARBNkg5Ty0WohIdWIE9aRt6X0QKX7o0EI1g8o8GT11JKaRp+6c5q8uhJoivJNEY1LO2fONM8dL62kzKuY7qAD6LJj2Y9HRX7TbvPfUnBEOZcoCSyzvn/GLhALG7lfEz0YjfPEEfHgbRGXAPV+A3kKdVVvQ6iDhApeKoMYE+eCh1VBY6WgHtZ4xkf79K+WcPShqiKf9WB1dXUcTMkrcjEgHdWBOnTpFcHCwWssNaUz1p6pMkDIhI6jOJypdOA/OSMFWnYDQUbatYeqGNldqqjJfOqiOJMokNeWkmyA16BCR90+ZQ2SAN0e7RFCPmNPB3xdzfi+yB6t/KZqRBuPYevFoyfSogfD2h4mL4fAn4u/wgyXw1d9g4g/FlCC1pl5ZwqjZwhZLZePshIdOiz5khMPF+vPK6hnTX3pfUYSW7YgQuPi3DrVLNbRaiJ0gHdSBKCsr47///S9TpkxRY7khT3ZRNTqtxrJIwWA0V8sIqrOJzICmKlHT5EgMddBQJu6mbaFzmpQZnfwtjULUP1R28DsMv3Ax9chZZSRqULAV/CIgIoU008jTDg4X1+DnpSMxbJCO6554B8BVS4XjvuOfgx+fu158bsPNGHtpLlPvAmMrvHihmE41/0kxKtNZTauddahWTpWqLhLSdSoSH+rLKQdGUGubWymrM/Q/OS1nrdifS3/n3v0bsZOh5JBQIhhiDNiu9umnnw745qamJvLz81m3bh0NDQ3cdVfvsXWS3hw4XUNyVAC+Xip2CzZVu/cf2VCgq1ZlQJTjzqtGBz+IL1O/SPOkpkxNWVJiyrFEprlvBFVRRNo5cRZoNKTGBPBNfiWt7UY8dVoOF9eSFhOI1hoZopQFkH4dfPW00OXt73NpqIOTX4vuezXnrIcniYarU9/AonesH3+qFlHjRMCiYCtMuMmy92a/D6t+AfHT4bbVqpmUEObLwdNnVVtvMPLL6gH6lpgyyUpFpELW7Q6zyS7EThI3R6WHHVtK4gAG9JAefvjhAaccKR2pzJiYGJ588kkyMzP7PVYiUBSF7KJqrhynYtqnvVVMRJEpfudikpoqPeLYblCTs2irgwqiDtWctKDs4HcOURmw901R52jpeE5nU3VCRN07xpumRQfS0m7kRHkDSZH+HD1byw1ZVoruAyz4G+R/IVL9t63u2wHN2wztLeql97vy/TdEQ5SPuqNhrUKrFTcCJy2IoBrbYdNjsONf4BsuHPnSI+dvvG0kPtSXmqZWahpbCfK1vyRSfrlQDOgzgrrrJaEdfcvH7iUr1RddG6WGk4P65JNPDvhmb29v4uLiyMjIQKezs3TGEKGwspGaplbGq9nBb5JYkSl+52JKwTpaTL3TQbUxxQ8izV9xfPDjTA6qGk6xxHwi06G1UXy5ulv02pRu7nBQU2PEQIucklq8PLQ0tLTbVvYUEA2X/x+s+ZWYNDVxce9jcteLTNPI6dafpz+8fNVf0xYSZ0HOGqg+BcHxAx/bVA0f3Ql5m0S5wkUPwvPjhcbmwmdVMSfeJDVV1cB432BV1hyIvLJ6PHUaRob2+L3Ul8FXf4ek+c6PdKtBcDyMCB2SdagDOqjXXy9HGKpNtqlBSm2JKZARVFcgKl2k+B1J1QnhGKsxwSpoJJz4UqRjB0qBVuZDQKxoEJE4jqguAyHczUE9uRX8o0Q6HBgd7o+nTsPRs3Wd04UyYm0cXDL5R5C9UjS/JM0TN40m2tvg+AaRinf3qJk5dNwIULCtb2fdRMVxWHGTGFu88DkxwhUg8/si3T/3MVWmXpmkpgorG9UN0PRDfnk9CWF+eOp6ZBq++Kv7ykr1hUYjoqjFB5xtieq4WY7I/TlQVI2Pp5bkKBW/2JurxaOMoDqfyHQoyxHpMkehhsSUiSA9tNSf/0z1R2We+zlIQ4GIVEDjfnWonfWnsztvfLw8tIyNDCCnpJYjxbV4aDUk2Xpd1GqFNqqhXjipXSnaKQaaqCUv5epEpovI2kBp/uMb4dXLRJDjttXnnVOAaXdBawMcWKGKOfEdkcxTDurkzy+v7y3QX/KdkJWaejdEqNgk52xiJ4lrgrlDVtwE6aA6mIOnaxinD8Kj512dLcgIqusQmS7uzs8VOO6cVSdUdFDNlJqSDqpz8PIT08LcTQu1Mg/qS853l3eQFh3A0bO1HC6uZWykP94eKpSKRabCrF/BwZWQv+X887nrQeflftOCrEWrhcQLRWlFT+k7RYHt/4T3boSQeKHVmnBB92NiJ0HcVPj2VVHzbCN+3h6E+3s5pJO/pc1IYWUjYyK7NEgpCnz2iIgGX/KQ3W1wKPrJoLQLB3wIIR1UB9LabuTQmRp10/sgogIgu/hdAUePPG1phLpi9RzUzmlSAziojVVCTks2SDmHqAz3i6Ce7JhqNOqibk+nxgRQWmtgb+E529P7XZn9gPh8rvmV+BtRFCErNOoidUph3IXEi8TgjerC88+1NsMnP4aNf4C0a+CODf3XqE67R9xcnPhCFXPiQ30prLL/uNNTVQ20G5XuDVK56zpkpX4/9L4rh+hEKemgOpDckjoMbUZ1BfpBpvhdCVMK1lFalaZIrRoNUmDeNKlOiSnpoDqFyHRRA9za7GxLzKdgm6hZ7nEjlRotmqLqDW3q6kJ7+ohU/7kCIZpfcUw0lg2X9L6JUR11qKY0f+1ZePNKEV2+9FH4wZsiKt8f6dcK3drdr6piTkKYn0MiqHmdElMdDmqbATb8fmjISvVFQIyo75YOqsRaTA1Sqo44BZnidyVMKVhHNUqpKTEF4iKn9Rg4xS8lppxLZJpI51Ucc7Yl5mGqPx01u1fjXVqXqVHpajqoIMoJJt0iZJO+/rt4LnmYOagRqUIyqmArnN4Dr1wC5bmw6F0xPWkwLVgPb8j6ERz7DM4VDnysGcSH+nK2thlDm31r9E0SU50O6u5XxA3K/L8OzQa5zkYp6aBKrCS7qJpQPy/iQkaou3BzNXj6gc7+2nISM4jKcFwEVU2JKRBzvANiB54mVZkHGh0EJ6hzTolluNvI0/JcMemsR/0pQESAN+H+XoAdHFSAy/8i0rnffQgxE89nCIYLGo3Y99z18MaVwuG8cyOkLTR/jazbQaOFPa/bbE5CmC+KAqfP2beZJ6+snpggH/y8PaChQgxwSJoHY+fa9bxOJXaS+Fsz1DvbEtWQDqoDyS6qYUJc0IDDD6yiqVpGT12JyHSoyhe1b/am6oTo1FWzpioobuAa1Mo8UbPm4aXeOSXmEzoGdN7u0yjVQ/+0J2kxgSSG+RLoY4cbbN9QIeAP9hHndwdGXwyGWjEZ6p4vLRfeD9JD6lWi+93GLvHOTn47p/nzy+vPR0+/eQFaGoaOrFR/xE4CFCg56GxLVGMIxrpdk3pDG8fK6lig5gQpE83VQ6/o252JnQiKUXRUxttBELwranbwmwjSQ9Hu/l+vzJfpfWei8xD7b85ABVegYKvQ1w1J7PPlv1ybSUNLm/3On3kDeI7o10Ee8kxaIkp3kuZZn2Wbdg8cXQWHPhJlE1YS36mFar9GKUVRyC+r5wdTRoonCncINYKIFLud0yUwNUqd2ddbkcFNkRFUB3HoTA2KgvoNUiC6+GWDlOugzxKPxfvsfy41NVBNBOqhtrhvaRlFkQ6qKxCe5B41qEZjh/7prH7rHRPD/dTt4O+JRiMigK4wgtQZ6DzF/78tJWCJsyAiDXa93FuyygIi/L3x9dJRaEct1JLaZhpa2hkT4SfGgJ/NPn9NHsr4RwoVliFUhyodVAeRXVQNqDxByoRM8bsWAdHCyTuz177naTOIbnvVI6hxYGwVdYM9qSsR4t1SA9W5hCeLpo82g7MtGZjyHGisHL7Ry6GCRgPT7hbp49Pf2rCMhvhQX7um+PPLOhqkIv1FnXZb85CbUd8vsROlgyqxnOzT1cSH+hLqZ4e6veZqGUF1NfST7e+gVp8CFPs4qNB3o5Ts4HcNIlJEGYmpSc5V6aw/7d0gJXEzxi8C70CbJadGhvradZpUXlkdgJgiZboGD4cIKog0f1X+eWUfN0c6qA4iu6iG8XF2SmPJCKrroc8SzkNjlf3OobbElAnpoLo+HfPsKc91rh2DcfJr0VAXIhUf3B5vf5i4GA5/AvV9ZFfMJKHDQTUarS8VGIj88gYCfDyICPAWDuqI0H7rn4ccpjrUs9nOtUMlpIPqAMrrDJypblJf/xSgrUWkXKWD6lo4og5VbYkpE4Emsf5+HFQPn/PHSJxDWIeD6sqNUkYjFG4X04wkQ4Opd4nyn73/sXqJhDBfDG1GyursU56SVyY6+DUajWgY0mcNrvc6VBhiE6Wkg+oADnYI9NulQUpOkXJNYiYCHRdIe1F1QqTcfMPUXXdECHj69i01ZVIN0MpLh1Px8oWgeKhw4Qhq2WHRwDlK1p8OGcKTYMwc2LNcNCBZQXyYmFxlr07+TokpQ72ogR4u6X0QsmohiY5p0HUA8lvGAWQXVaPTatQd5Weic4qUlJlyKXwCRSOLPetQq06I6Kna0QGNRqT5+4ugygYp1yAi2bU7+U/K+tMhybR7oK4YctZa9fZOLVQ71KHWNrdSVmdgbKS/SHMrxuHloMKQmiglHVQHcOB0DclRAfh62UF2VkZQXRd9lnBQbZBlGRB7aKCaCNT3dlDb24Sslaw/dQ3Ck0WKvy85MFegYBuEjDpf0ywZGiTNE3XFVjZL6YNHoNXYx0HNLxNTlMZE+HVpkBomHfwmYieJBtqGSmdbYjPSQbUziqKQXVTNxJF2apCqKxGPsgbV9dBPhoZyIQWlNu2t4iJkLwe1r2lSNadE/Zl0UF2D8CRobRx46pezMLZD4TaZ3h+KaHUw5U7x+7VipLOXh5bY4BEU2kFqKr9clA2Mjezo4A+OB79w1c/j0nQ2Srl/FFU6qHamsLKRmqZW++iftreKGcMBMRCZpv76EtswpZbskeY/mw3GNogep/7aIBzU+tLuOpuV+eIxVKb4XYLwjsk4rpjmL/kOmmuk/ulQZfKtolnyW+uiqAlhvnYR688rq8dTp2FkqO/5BqnhRswE8TgE0vzSQbUz2fZskPrm31D6HVy5FLz81F9fYhtRmaDzsk+jVME28Zhwofprw/ku/dri88+ZHFQZQXUNwpPFoys6qKbPp3RQhya+oZD5fch+3yrNzfhQP07ZoUkqv7yehDA/PJsqRMZnODqoPkHiGl18wNmW2Ix0UO3MgaJqRnjqSIr0V3fhqpPw5VOQuhDSFqq7tkQdPLwgerx9HNTCHcJB8Y9Uf204XzfYNX1cmQfeQcMvZeaq+IWL5kiXdFC3ii/JwBhnWyKxF9PuFiUm2Sssfmt8qC/nGlupbbZOCaA/8svqOwT6O665w9FBBYidbF8FGQchHVQ7k11UzTh9EB46FbdaUWDtr0HrAQueVm9difros0Sqxdiu3prGdjj1DSRcoN6aPelLrN/UwT9cNAVdHY1G3KSUu5iDamwXN1Cye39oEzsR4qaJZikLG/USwjo6+VWsQ21pM1JY1ciYyI4GKY32fLp7uBE7SSgtmHpU3BSnOqhlZWUsXbqUJUuWMGnSJFJSUti1a1efx27evJnrr7+ecePGcckll/DCCy/Q1tbmYIsto7XdyOHiWiao3SD13YeQvwXmPgZBUjDdpdFniUEKak78KT0EhlpIsKMD0JdYf2W+TO+7GuFJLhdB9a09Lj6fMr0/9Jl2txiteWKLRW+zh9RUYWUD7UblfINUZPrwLX3rFOw/4FQzbMWpDurJkyd59dVXKS0tJSUlpd/jvvrqK372s58RFBTEH/7wB+bOncu///1vnnzySQdaazm5JXUY2ozq1p82VsFnD0PcVJhyh3rrSuyDPRqlCraLR3tGUL18xYhAk4Pa2iTUCKSD6lqEp0BDmRDEdxECKg6If0gHdeiTfi34RcDu1yx6W3xHBFXNTv788g6JqfCOCOpwk5fqSvQ4EUF280YpOwhzmk9GRgY7d+4kJCSETZs28bOf/azP455++mnS09N5/fXX0el0APj5+fHKK6+wZMkSEhMTHWi1+XQ2SKnZwf/5H0R37NXPC7kPiWsTOlrUbZ7ZC5OXqLNm4XYxLcTe0fMg/fka1KqTgCJF+l2Nzkap4zBymnNt6SCg8oBwnAOinG2KxN54eEPWj+DrpXCuwOyZ94E+noT4eqoaQe2UmPIoF/rgw7X+FMDbX/wNFu+HwHnOtsZqnBpB9ff3JyRk4AlIeXl55OXlsWjRok7nFGDx4sUYjUY+//xze5tpNdlF1YT6eREXMkKdBU98BQfegQt+AVEZ6qwpsS9aLegnqRdBNRpFfZ890/smgkZCjclBNXXwSwfVpYhwsU7+9lb8K7+T9afDiazbRbTu29ctelt8mB+nqtTr5M8rqycmyAffioPiieHsoML5iVL2GhTjAFy+SerIESEEnJmZ2e35qKgooqOjO193RbKLapgQF4RGjaaS1iZYc7+YzHLxg7avJ3Ec+iwoPSx+h7ZSngNNVfZN75voOk2qMk88Sg1U1yI4AXTe6tY428LZbHTtTVKgfzgRpBdKMvveghbzI6IJob6qp/jHRHTUn3qMgIhhrg2unwwNZXg2lzvbEqtxeQe1vFxsbkRERK/XIiIiKCsrc7RJZtFgaON4WZ169adfLxWjLa9+DjxVishKHIM+C5R2OHvQ9rUKO+pPE+2kf9qVoDgw1EBzrXBQ/aPAJ9D+55WYj1Yn6oIrjjvbEkHuevHoiAi/xHWYerdIq3/3odlvSQjzpbi6iZY220f1KooiJKZMDVIxE0Dn1ApG59PRKOVXneNkQ6zH5X+Dzc3NAHh5efV6zdvbm6Ymy6NShw4dstmuwWhtV8iI8CJRd469ey1P73Z9j0/tSdK3/YOquHkUnAsAK9Ybylizv47Eo9mTCUDRrk8pK7ftT27UgTX4+0TwXX4FaKyftWzOnoVUtTAaOLzzc+ILs8ErimMuvtf2wNU/X6N04fieOchhZ9qptBObs5yYvBXURE4jL/cUcMp59rgZrv4ZGxRlBKlBSXhu/DOH20Zj9PAd9C3eTc0YFVi5aRfpEb2/3wei535VNrbT0NKOd2MZxjP7KU+8htPuvqc2omlvZZJGh2/1Mbf9fLm8g+rj4wNAS0tLr9cMBkPn65aQmZmJt7e3zbYNxmorexb27t1LVlZH/YzRCMsfBp8gwm5+iTC/MPUMHAJ02ytXZpeekdpyRtpiq6LAliOQdClZU6ZYvYzZexbeAvsgQx8M35ZAygL32GsVcYvPV8102LqVrAmZomnF0TRWwX/vgBNfQNbt5Ectcv09cyHc4jNmDlEvwutzmVT9Gcz/66CHp2S28c/dGyloC2JJVrrZp+lrv7YeLwfKuXKMFm1OC1GTFhA1bgjsqa3sz8SvOselP18Gg6HfoKHLp/hNqX1Tqr8r5eXlREbaaZKOq7B3OZzeDVc8CdI5dV/0k21vlKrMF5JCjkjvw3mx/rIj0FAu609dlYgUUIznR9E6krPZ8MrFovTkmn/B1c+h6CyLhkmGCCOnwuTbYOeLUDJ4ltLf24MLx4ax4XAJio2NPPllQmJqlKGjFnu4N0iZ0GfhV51r8SAFV8HlHdS0NFHo3NPDLi0tpaSkpPP1IUltMWz6E4y6GMYvcrY1ElvQZ4ka4sYq69co7JhvnuAgBzUgRnTnnvxK/Cw1UF2T8CTx6OhO/uyV8Po8MTnqjs9g8q2OPb/E9Zj7fzAiWEw6NMMpmp8RzelzTRw5W2vTafPLGwjw8SCgIlvoN5spdzXk0Weha2s4r8LiZri8g5qUlMTo0aNZuXIl7e3nx0WuWLECrVbLvHnuq/E1KOsfhPYWWPgPOV7S3THd0RfbMB+5YDv4RTrOUdR5CCe1cIf4WTqorkmYgx3U9lZY9yB8co8YGHLPVzJiJRH4hsLlf4aiXUIScRDmpkeh1cCGw6U2nTavTHTwa4r3ic+i/L4U2GNQjANxuoO6bNkyli1bxvr1ovvzf//7H8uWLeOdd85/uB988EGOHDnCnXfeyQcffMDjjz/Oyy+/zKJFixg1apSzTLcvOWvh6Gq4+CGpPTkUiJkIaOCMlQ6qoog0asIFjr34BuqhtRHQQOgQ/Vtzd7x8ISjeMQ5qXSn852rY/TLM/Dks+RT8eyusSIYxExZD/EzY+EdoGLiRM9zfmykJoXx+2LaZ8fnl9aSHaqHsqLxZ6kp4Mu26EW7roDq9Ser555/v9vNHH30EgF6v55ZbbgHg0ksv5YUXXuCFF17gL3/5C6GhofzkJz/hpz/9qcPtdQTa1gZY+xuIzIAL7nO2ORI18AkUU3+svVBUF4qpTom/UteuwQjSw2kgON45DTgS84hItr+DWrQbPrgVmqrhhtdh3Pftez6Je6LVwlXPwEuzYdNjcO0LAx4+LyOKx9ce5VRlY+cIVEuobW6lrM7AtBFVgCId1K5odTQGpxAgHVTryM01T2B67ty5zJ07187WuAb63OVQdxYWvQ06T2ebI1ELfRbkbRTRUEujoKY0u6PqT02YGqVkFN+1CU8WnxGjUTgIaqIosGc5rH9I3LDctQmiMwd/n2T4EpUBM38KO/4Fk5ZA/PR+D52fEc3ja4+y4XAJd1802uJTmRqk0owdWsD6yVaZPFRpCE4loOBjaDO4XZDB6Sl+SQ9O7yHi5Kcw7W6Is15KSOKC6CeLbviaIsvfW7AdRoRARKr6dg1EoMlBlfWnLk14kijFqD2j7rqtzbDq56LpZfQlcM+X0jmVmMfFD4sSobW/hva2fg8bGepLekwgG6xM8+d1OKj6hiNisppfuFXrDFUaglNFL0up/fXf1UY6qK5Eeyus/iWtPmEw5w/OtkaiNrYUrBduE9FTtaNjgxEkHVS3IDxFPFaoOPK0rgTeuAL2vwMXPQiLV4qbJInEHLz94YqnhGO0++UBD52fEc3eU+corzNYfJr88gY8dRr8KrJler8PGkI6ghrW9j84EemguhLHPoPSQxRl/EyOlByKRGWCzstyB7XmDJwrEA1SjiYqQ9gcN9Xx55aYT3iyeFRz5OnWZ6D0CNz0Hsz5vRirKpFYQtrVkDQPvnhCXMf6YV5GFIoCG49Y3s2fX17PxJAWNDVFMr3fB60+EUL9xQ3rUKWD6kocXQMjQqiOlnOshyQeXhA9Hs7st+x9zqo/BdG5/7uz8sLv6viFi+hmuYoR1JNbIXEWpF6l3pqS4YVGAwueBmMbbPhdv4elRgcQH+prVZo/v6yeS/xPix9kBLU3Go3YF+mgSqymvRWOrYfkBTJSMZTRZ0HxfiFubi6F28E7EKLH2c+ugdA5vZdSMhgajYiiqhVBbaiE8qOOm1omGbqEjoLZv4Ejn0Lepj4P0Wg0zM+IYkd+BXXNrWYv3dJmpLCqkUm6fDFUJGaCSkYPMfRZQuWjucbZlliEdFBdhYJt4sOTttDZlkjsiT4LWhssi3QVbof4GfLGRTIw4Unq1aCecmLUXjL0uPAXoo597W9E410fzM+IprVd4Yvc3mPN+6OwsoF2o8KY1lyITAcvP7UsHlqYMmDFFmbvnIx0UF2FnDXg6Qtj5jjbEok9sbRRqr5M3PlKR0EyGOEpQiXClnG6Jgp3gMcIiJWlHRIV8PCGK5fCuZOw7R99HjI5PoRwf2+L0vz55fWAQljNIVmGNBCxk8SjmzVKSQfVFTAaxeSoMXPAc4SzrZHYk9DR4B1kvoPqzPpTiXthapSqzLN9rYJtMHKqqJuWSNRgzKWQeYNwUCt7z4bXajVcnh7FlzllNLeaVwKVV1ZPgqYUD0ONrD8dCN9QCB3jdnWo0kF1BYr3C2H+tKudbYnE3mi1oJ9kgYO6XUTWYyfa1SzJECCiw0G1tVGqqRpKvpM3RRL1mf+EiKau+40YANHz5YwoGlra2ZFfYdZy+eUNXOzXoSstHdSB0WfJCKrECnJWg9YDkuc72xKJI9BnQelhaG0a/NiC7TBympwoJhmc4ATQeds+8rRoF6BIB1WiPgHRMOdRyN8imqZ6MHNMGP7eHmw4ZJ7cVH55PTN9CkQ5SkSaurYONfRZUFcMtcXOtsRspIPqChxdI+RcpAj28ECfBUo7nD048HGNVVB2GBKk7JjEDLQ60Yhiq4NasK1D+1ZOspPYgSl3Crm9zx6B5tpuL3l76Lg0NZJNR0tpN/aOsHZFURTyy+rJUPJEhkmqjQxMZ/+D+0RRpYPqbMpzofI4pMru/WGDuY1Sp74Rj1LqR2Iu4Um2O6iFO8RnVNbDS+yBzgMW/kNMKvvyqV4vz8+IorKhhb2F5wZcpqS2GUOLgdimYzK9bw7R40Sm1o3qUKWD6myOrhaPUgx7+BAQLWZUFw9yJ1u4Q6RsZSe1xFzCk8XUsX6kfAbFUC9q4p0xtUwyfIibAlk/gl0vwdnsbi9dkhKJl4d20G7+vLJ6UjSn8TAaZAe/OXj6iGmG0kGVmE3OGtBPgcBYZ1sicST6yYNfKAq2iRGjnj6OsUni/kSkgGKEqhPWvb9olyg/kfWnEnsz9zHwDYNVv+g2uMTf24NZY8PZcLgEpY9GKhP5ZfVM0HaoAcgIqnl0DooxOtsSs5AOqjOpOS0+LDJ6OvzQZwknoj/NyuYaKDkoI1kSywhPEo/WpvkLd4BGByOnq2eTRNIXI0JgwVNw9gDsernbS/Mzojh9rokjZ2v7fi+QV17PFM8TKCNCRYOgZHD0WWCoVUeKzgFIB9WZ5KwTj1JeavhhuuPvL81ftFtEwmT9qcQSwmx1ULeLhhNvf9VMkkj6JeN7kDQPtjwO1UWdT89Ni0KrgQ2H++/mzy9rIEt3Ao0+S4z6lQyOqRTCTdL80kF1JjmrxfQXU9RDMnyImQho+u+oLNgmCtrjpjnSKom74+ULQfHWOaitTeKLS6b3JY5Co4GrngEUWPtApzZqmL83UxJD+XyAOtTisnJGtp+S6X1LCE8GL3/poEoGobFKaFymye79YYlPoLhY9HehKNwhmqO8fB1rl8T9iUi2Tqz/9B5ob5EOqsSxBMcLbdTjG7ppo85LjyKnpI7CyoZeb6lpaiW6IRctinRQLUGrE2NPB2vQdRGkg+osjn0mmhGkvNTwRZ8lHNSejQAtDeICItP7EmsITxY1ZpY2QhRuBzQQP8MuZkkk/TLtxxAzAdY9CE1CXmp+RjQAn/eR5j9RXs/4zgYp2cFvEfrJYlJcm8HZlgyKdFCdxdE1QmoodpKzLZE4C/1kaCiHmqLuzxftBmObjGRJrCM8CVobofa0Ze8r3C60EkcE28UsiaRfdB5w9T+hsQI2/R8AI0N9SY8J7FNuKq+jg781MB78wh1srJujzxKZktJDzrZkUKSD6gxaGiB/s+jel8Xdw5f+BPsLd4BGKzupJdYRniIeLalDbWuBom/lTZHEecROhBk/hb1vQqEYUjI/I5q9p85RXtc92pdf3sBEbT66OJnetxg3miglHVRnkLcZ2pplen+4E5UpRkr2clC3i3SXT6Bz7JK4N+HJ4rHcAge1eD+0NcmyEolzufR3oslv9S+hzcD8zCgUBTYe6Z7mLzt7ijhNBVo5jtdyAvXgH+UWjVLSQXUGOWuFBpyMVgxvPLzETOoz+88/19osmlXkZ0NiLX7h4vpiSQS1cJt4jJe6uxIn4uUHC5+FilzY9hwpUQEkhPn2SvP7lHVMn5INUpaj0Zzvf3BxpIPqaNpb4dh6SF4g6m4kw5vOyR4dk1TO7IV2g3RQJdaj0YgoasVx899TsB0i0sAvzH52SSTmkHQ5ZN4AW5eiqTjO/IxoduRXUNvcCkCrUSGm4QhGdBAz3snGuin6yeIGtrnG2ZYMiHRQHU3BNvGhkPJSEhAOamvDeVkg2UktUYPwJBGFMof2NjHiVKb3Ja7CFU+B5whYcz/z0iJobVf4MrccgJL6dsaTR23gWBFxlVhO56CY/QMf52Skg+poctaApy+MmeNsSySuQM9GqcLtEJUBvqHOs0ni/oSnCIWI/kbpdqUkG1rq5VhdievgHwmX/wUKtzO5ai3h/t6daf4zNa1M0ObTHiMVcKzGpB7k4ml+6aA6EqNR1J+OvUzcHUokoaPBO6gjtd8qJKZkel9iK6ZGKXPS/IU7xKP83ElciUlLIOFCtBv/wPVJnnyZU0ZzaztNVUUEaxrwHy1VTqxmRAiEjXX5Tn7poDqS4n1Qd1Z270vOo9WCfpJwUIv3C/1KGcmS2EqEyUE1o1GqYDuEjoGAaPvaJJFYglYLC5+D1ibuanyFhpZ2duRX4FedA4B3wlTn2ufuuEGjlHRQHcnR1WK+evJ8Z1sicSX0WVB6WMiPgYxkSWwnOAF03oPXoRrb4dQOWX8qcU0ikmH2b4gqXMMC7+/YcKiUiIZjGDTeoqlPYj2xk0XArLbY2Zb0i3RQHUnOWkicJcLrEokJfZYYe7tnuUjN+kc42yKJu6PViRTeYCn+siOiaTNhlmPskkgsZdb9EJ7M457L2XakkNGteZT4pkoVHFtxA8F+6aA6ivJcqDwu0/uS3pguFA1lMnoqUY/wpPPqEP1RsF08yrISiavi4Q1XP09YWyl3tbxNuuYkDeFSXspmoseJjK4Lp/mlg+oojq4Wj6lXOdcOiesREC2me4CIsEskahCeDNWFYvhDfxRuh+B4CB7pOLskEktJuIDWibdxu8cGfDSt6OLlBCmb8fQR0wylgyohZw3op0BgrLMtkbgi+sniUUayJGoRkQKKEapO9P26oogOfhm1l7gBnvP/TLVOyO+FJc90sjVDhM5BMUZnW9In0kF1BDWnxYdARk8l/ZF1O8z4qbyBkahHeJJ47K9RqjwXGiukgypxD0YEc/bSf7DVdy5h+iRnWzM00GeBoRYq85xtSZ/IKmNHkLNWPKZd7Vw7JK7L2MvEfxKJWoSZHNR+GqUKZf2pxL1Im3Ude0eMRKOVsTVV6DooxiRN50LI37IjOLpaTHYJl3d9EonEQXj5QlB8/41ShdshIEYMi5BIJMOP8CTwCnDZOlTpoNqbxipR55Umu/clEomDiUjuW6y/a/2pRuN4uyQSifPR6iB2oss6qG6R4t+1axe33nprn6+tW7eOMWPGONgiCzj2mdC4lPJSEonE0YQnCykpo1FM5jFRdUKIdMv0vkQyvNFnwTf/hjaDkPRyIdzCQTVx2223kZGR0e25qKgoJ1ljJkfXQGAcxE5ytiUSiWS4EZ4EbU1Qe1rISZkw1Z9KWTOJZHijzwJjK5QcgrgsZ1vTDbdyUKdNm8bcuXOdbYb5tDRA/maYfJtMo0kkEscTniIey4/1cFB3gG+4iLBKJJLhS9dGKRdzUN2uBrW+vp62tjZnm2EeeZuhrVnKS0kkEudgckB71qEWbBfpfXnjLJEMbwJjwT8ail1v5KlbOai//e1vycrKYsKECdxxxx3k5g4yxs/Z5KyBESFSZ1AikTgHv3BxDerqoFafgppTMr0vkUjETap+sks2SrlFit/T05P58+dz0UUXERISQm5uLsuXL2fx4sX897//ZdSoUc42sTftraJBKuUq0LnFNkskkqGGRiOiqF0d1MId4lE2SEkkEhAOau46aK4BnyBnW9OJRlEUxdlGWENOTg433HADV1xxBc8884xZ7zEYDBw6dMjOlgk07QbSv7yTgokP0RA2ziHnlEgkkp4kHPg7QaU7OTj/I/Fz9lKCz35N9vxPQeNWSTSJRGIHAsr3kLzzQY7NWEpdxGSn2JCZmYm3d3cVAbcN7aWmpjJz5kx27txp8Xv72gi7MO0oqVa8be/evWRluVaxsqsi98py5J6Zz5DYq+YLoGg9WWmjwDcUtufCqNlkTZlql9MNiT1zIHK/LEPul2WYtV9No2HngyT71YKD93agwKFb3z7HxMRQU1PjbDMkEonEdelslDoOdSVQlQ+Jsi5eIpF0MCIEwsbCGddqlHLbCCpAUVERISEhzjZDIpFIXBfTjO2KXKGHCrJxUyKRdEefBSe/drYV3XCLCGpVVVWv5/bs2cOuXbuYNUt2okokEkm/BCeAzls0ShVsF7O3o8c72yqJROJK6LPEdLnaYmdb0olbRFDvv/9+RowYwaRJkwgJCeH48eOsXLmSkJAQ7rvvPmebJ5FIJK6LVifSdxXH4VwBxE+XyiISiaQ7XQX7A2Oda0sHbnGVmjt3LqtXr+aNN96gvr6e0NBQFi5cyH333UdsrGtspEQikbgs4UlQsBUaK2H8jc62RiKRuBpRmaD1FA5q2tXOtgZwEwf11ltv5dZbb3W2GRKJROKehCfDkU/FvxNkWZREIumBpw9EZ7qUYL9b1KBKJBKJxAYiUsSjxwiIneRcWyQSiWuiz4LiA2A0OtsSQDqoEolEMvQJTxKPI6eCh5dzbZFIJK6JPgsMtVCZ52xLAOmgSiQSydAnLAm8/GHMZc62RCKRuCrxM0DrAQ1lzrYEcJMaVIlEIpHYgJcv/HwP+EU42xKJROKqhI6GXx1xmeuEdFAlEolkOBAY42wLJBKJqxMQ5WwLOpEpfolEIpFIJBKJSyEdVIlEIpFIJBKJSyEdVIlEIpFIJBKJSyEdVIlEIpFIJBKJSyEdVIlEIpFIJBKJSyEdVIlEIpFIJBKJSyEdVIlEIpFIJBKJSyEdVIlEIpFIJBKJSyEdVIlEIpFIJBKJSyEdVIlEIpFIJBKJSyEdVIlEIpFIJBKJS+HhbAMciaIoALS0tDjZksExGAzONsFtkHtlOXLPzEfuleXIPbMMuV+WIffLMlx5vwbyxzSKyWsbBtTV1XHs2DFnmyGRSCQSiUQi6SAzMxNvb+9uzw0rB9VoNNLQ0ICnpycajcbZ5kgkEolEIpEMW0wuqLe3dy+/bFg5qBKJRCKRSCQS10c2SUkkEolEIpFIXArpoEokEolEIpFIXArpoEokEolEIpFIXArpoEokEolEIpFIXArpoEokEolEIpFIXArpoEokEolEIpFIXArpoEokEolEIpFIXArpoEokEolEIpFIXAoPZxvgahw8eJBPPvmEXbt2UVxcTHBwMJMmTeL+++8nISGh27H79u3j73//O0eOHMHf358FCxbwwAMPMGLEiM5jysrKeOutt8jOzubQoUM0Njby1ltvMX369F7nrqur49lnn2Xjxo3U1NQwatQo7r77bq6++mqz7c/Pz+eJJ55g3759eHp6cumll/LQQw8RGhraeUxDQwOvv/462dnZfPfdd9TU1PDkk0/yve99T+5Vj73617/+xQsvvNDvGu+99x5ZWVlmnU/t/bJkPXPXHIja2lr+/ve/s3HjRpqbmxk/fjyPPPIIaWlp3Y5bsWIFO3fu5ODBgxQXF3P99dfz1FNPmXWO4bZfu3bt4tZbb+13jfvvv5+f/OQnZp3P0v9Htfds3bp1bNmyhe+++46CggKmTZvG22+/bbbtAKWlpTzxxBNs374do9HIjBkzeOSRRxg5cmS341588UUOHjzIwYMHqaio4Oc//zn33XefRecaDnv18ccf88gjj/S7xt///neuueYas8/prD1ramri448/ZtOmTRw/fpyGhgYSExO58cYbufHGG9HpdGbZ78hr2HDYK7WvXz2Rk6R68Itf/IJ9+/ZxxRVXkJKSQnl5Oe+++y6NjY3897//ZcyYMQAcPXqURYsWMXbsWH7wgx9QUlLC8uXLufDCC3nppZc61zP9AhMSEggNDWX//v19Ol1tbW3cdNNN5OTkcMsttxAfH8+2bdvYvHkzf/vb37juuusGtb2kpITrrruOwMBAbrnlFhobG1m+fDl6vZ4PPvgAT09PAE6fPs1ll11GTEwM8fHx7Nq1yyoHdTjsVU5ODrm5ub3e/49//IPGxka2bduGl5eXU/bL3PUsWbM/jEYjixcv5tixY9xxxx2EhITw3nvvUVpayscff0x8fHznsXPmzKG+vp5x48axa9cuFi5caJWDOhz2q6Kigu3bt/d6/6pVq9i2bRsffvgh48ePd4s9W7JkCYcOHSIzM5Njx46RnJxskdPV0NDA9773PRoaGvjRj36Eh4cHb775JhqNhk8//ZSgoKDOY1NSUggPDyctLY2tW7da5aAOh70qKipi3759vd7/n//8h5ycHL766isiIiJcfs+OHTvGNddcw8yZM7nwwgvx9/dn27ZtbNy4kRtuuIEnnnhiUNsdfQ0bDnul9vWrF4qkG3v37lUMBkO3506ePKlkZmYqDz30UOdzd911lzJ79mylvr6+87kPPvhASU5OVnbs2NH5XF1dnVJVVaUoiqJs3LhRSU5OVnbu3NnrvGvXrlWSk5OVTz75pNvz9913nzJz5sxeNvXFY489pkycOFEpKSnpfG779u1KcnKy8uGHH3Y+ZzAYlNLSUkVRFOXIkSNKcnKy8tFHHw26fk+Gw171RXFxsZKSkqI8+uijg56nK2rvl7nrWbJmf5j2fOPGjZ3PVVZWKlOmTFF++9vfdjv29OnTitFoVBRFUbKysnrZYi7DZb/64vLLL1fmzZs36HE9ceaeFRcXK21tbYqiKMo111yj3HLLLRbZ/sorrygpKSnK4cOHO5/Ly8tT0tLSlOeee67bsUVFRYqiKEpNTY2SnJys/POf/7ToXIoyfPaqJ01NTcqkSZOU22+/3aJzKorz9qyyslI5duxYL3sefvhhJTk5WTl16tSgtjv6GjZc9qovrL1+9UTWoPZg8uTJvSJiiYmJJCUlkZ+fD0B9fT07duzguuuuw8/Pr/O4a6+9Fl9fX9avX9/5nL+/PyEhIYOed9++fWg0GhYsWNDt+SuvvJLKykp27do16Bqff/45c+bMISoqqvO5Cy64gMTExG42eXl5ERkZOeh6gzEc9qov1qxZg6IoFpUTgPr7Zc56lq7ZHxs2bCAyMpLLLrus87nQ0FAWLFjApk2baG1t7Xxer9ej0WgGXXMwhst+9eTgwYMUFhZa/PkC5+0ZQExMjNnpw77YsGEDEydOJD09vfO5MWPGMHPmzF57HhcXZ/V5TAyXverJli1baGhocKvPV2hoKElJSb3sufzyywE4ceLEoLY7+ho2XPaqJ7Zcv3oiHVQzUBSFioqKTucpNzeXtrY2MjMzux3n5eVFWloaR48etfgcLS0teHh4dKaWTZhqUI4cOTLg+0tLS6msrOxlE8D48eOtsskahsNerV69mpiYGKZOnWqh5b1Re796rqfGmiDSUBkZGb0u2uPGjaOhoYFTp04NuoYaDIf9WrVqFYAqF3hwzJ7ZitFoJDc3t8+/yXHjxlFQUEBTU5Nq5+uP4bBXq1evxsfHp9NhsRVn7llFRQWAWce6wjVsOOyVmtcv6aCawapVqygtLe2M2JWXlwP0WbsTERFBWVmZxecYNWoUra2tHDx4sNvze/bsARh0TdPr/dlUWVlJe3u7xXZZylDfq+PHj5Obm8tVV12lSpRQ7f3quZ4aa5rW6CvqbnrOmt+jNQz1/Wpvb2f9+vWMHz++z8Yta3DEntlKdXU1LS0t/dqkKEqn3fZkqO9VdXU1W7du5dJLL8Xf318Ve5y1Zy0tLfznP/8hPj6+T2e9J65wDRvqe6X29Us6qIOQn5/Pn//8Z7Kysrj22msBaG5uBuizOcbb27vzdUtYuHAhAQEBPPzww+zYsYPTp0+zcuVK3nvvvW7n7A+DwTCgTeasYSvDYa9Wr14NqHN3qPZ+9bWerWt2XaOv95ues/dnC4bHfn3zzTdUVFSoFj111J7ZylC8frniXm3YsIHW1tYh8fn6y1/+Qn5+Pn/84x/Ragd3ZZx9DRsOe6X29UvKTA1AeXk5P/7xjwkKCuL555/v/MX6+PgA4q6kJwaDofN1S4iIiODFF1/kwQcf5PbbbwdETeYf/vAHHnroIXx9fQHRvdnY2Nj5Pp1OR2hoaOeFqT+butptD4bDXimKwpo1a0hOTiY1NdViu7ui9n71t54la7a0tFBTU9Pt9dDQUHQ6HT4+Pn2+3/ScPT9bMHz2a/Xq1eh0Oq688so+X7cER+6ZuTQ3N1NXV9ftuYiIiCF3/XLVvVq9ejXBwcFcdNFFFtvTE2fu2WuvvcYHH3zAAw88wOzZszufd9Vr2HDZKzWvXyAd1H6pq6vj7rvvpq6ujhUrVnQLwZv+3Vcapb/QuDlMnTqVTZs2cezYMRobG0lNTe0MpScmJgKwfPnybrqcer2eLVu2dJ6zP5vCwsJsKsofiOGyV3v37uXMmTM88MADVtlsQu39Gmg9S9bcv39/L027zZs3ExcX12+6yfScGk13/TFc9qu5uZmNGzcyc+ZMwsPDe71uCY7eM3NZt25dL13O3NxcgoOD8fLy6tcmjUZj9TkHY7jsVXFxMXv27OHGG2/sVb9vKc7cs48//pilS5fywx/+kHvuuafba654DRsue6Xm9cuEdFD7wGAwcO+991JQUMCbb77J6NGju72enJyMh4cHhw4dYt68eZ3Pt7S0cPToUZvC2zqdrpsQ7o4dOwCYMWMGANddd103YXjT3XRUVBShoaEcOnSo15oHDx7sJUSsFsNpr1avXo1Go2HhwoVW26z2fg22niVrpqam8sYbb3R7r+nil5qayv79+1EUpVvt7cGDB/H19e2mIagmw2m/bOmutuT/0R57Zi6zZs3qtWcAWq2W5OTkfv8mExISzB6QYAnDaa9M6iOWCPP3hTP3bNOmTTz66KPMmzePRx99tNfrrnYNG057pdb1qxs2C1UNMdra2pR7771XSU9PV7788st+j7vzzjuViy66qE/tsu3bt/f5noG0PfuisrJSueSSS5Q77rjDrOP/+Mc/9tL23LFjh5KcnKx88MEHfb7HFh3U4bRXLS0tyrRp05TFixebtX5fqL1f5q5nyZr9MZAu3gMPPNDv+2zRQR1u+3XvvfcqEyZM6HZOS3HmnnXFGm3Pl19+uZe2Z35+vpKWlqY8++yzfb7HFh3U4bZXV199tXLJJZd06ntagzP3bPfu3cq4ceOUJUuWmKV13RNHX8OG216pcf3qiZwk1YO//vWvvPXWW1x66aW9OuP8/PyYO3cuAIcPH+amm24iKSmpc/rDG2+8wfTp03n11Ve7vW/ZsmWAKGpes2YNN9xwA3FxcZ1TjEzcfPPNZGVlkZCQQHl5OStXrsRoNPL++++j1+sHtf3s2bNcd911BAcHd05Hev3114mJieHDDz/sVvT8zjvvUFtbS0VFBe+++y7z5s3rjBz+9Kc/lXvVo0D8iy++4N577+VPf/oTN910k1n7Y+/9Mnc9S9bsj/b2dhYvXszx48c7J4usWLGCs2fP8vHHH3fr2NyyZQs5OTkAvPTSS4wZM6ZT0ubaa6816/cznPYLRHf1rFmzmDdvHs8++6xZ+9MXztyzb7/9lm+//RYQI4C9vLz4/ve/D4jJPIPVbdfX13P99dfT1NTE7bffjk6n480330RRFD799NNu8jiffvopxcXFGAwGXnrpJaZPn96ZOVmyZAkBAQFyr7pw7Ngxrr76au655x6bSpSctWdnzpzh2muvpbW1lQcffLCXAsHkyZN7jcPtiaOvYcNlr0C961dPpIPagyVLlrB79+4+XzPVMJrYs2cPS5cu7Zyfe+WVV/LrX/+6s0nHREpKilnrPf7443zxxReUlpYSFBTExRdfzC9/+ctuYvKDcfz4cZ566in27t2Lp6cnl1xyCY888ki3+fIgLoJnzpzpc42+Rnv2xXDZK4Bf//rXfP7552zbto3g4GCzz9EVtffLkvXMXXMgampqePrpp9m0aRMGg4Fx48bx8MMPk5GR0e24hx9+mE8++aTPNfoaXdsfw2W/AN5//30ee+wxXnzxRebMmWPW+n3hzD3717/+1a3muyvmjlIuKSnpNl9++vTp/P73v+/1hTqQXaY6usEYLnsF8Mwzz/DKK6+watWqfq+x5uCsPRts5ru5e+bIa9hw2StQ7/rVE+mgSiQSiUQikUhcCqmDKpFIJBKJRCJxKaSDKpFIJBKJRCJxKaSDKpFIJBKJRCJxKaSDKpFIJBKJRCJxKaSDKpFIJBKJRCJxKaSDKpFIJBKJRCJxKaSDKpFIJBKJRCJxKaSDKpFIJBKJRCJxKaSDKpFIJBKJRCJxKaSDKpFIJBKJRCJxKf4fOvwGx9+7ZTkAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(figsize=(11, 6))\n", "ax = sns.lineplot(data=df_port, x=\"date\", y=\"mmsi\", hue=\"polygon_name\", palette=\"tab10\")\n", "ax.set(xlabel=\"\", ylabel=\"Unique MMSI\", title=\"Number of unique vessels per month\")\n", "plt.legend(title=\"\") # loc='upper right', labels=['Raw Data', 'Interpolated']\n", "# plt.savefig(\"../docs/images/Output_Mining_Gas.png\", facecolor='white', dpi=300)" ] } ], "metadata": { "kernelspec": { "display_name": "datapartnership-sandbox", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.8 | packaged by conda-forge | (main, Nov 22 2022, 08:27:35) [Clang 14.0.6 ]" }, "vscode": { "interpreter": { "hash": "b6702b69e93007336b96338c5a331192f07cedff01d36d4dcfa0f842adb718ad" } } }, "nbformat": 4, "nbformat_minor": 2 }