Nighttime Lights Trends in Jordan#
The purpose of this notebook is to conduct an examination of the spatial and temporal distribution of nighttime lights, using NASA Black Marble, nationally and across districts in Jordan.
Data#
Define Region of Interest#
Define region of interest for which NASA Black Marble will be retrieved and aggregated. We use GADM.
Jordan#
Show code cell source
JOR_0 = geopandas.read_file(
"https://geodata.ucdavis.edu/gadm/gadm4.1/json/gadm41_JOR_0.json.zip"
)
JOR_0.explore()
Districts of Jordan (ألوية)#
Show code cell source
JOR_2 = geopandas.read_file(
"https://geodata.ucdavis.edu/gadm/gadm4.1/json/gadm41_JOR_2.json.zip"
)
JOR_2.explore()
Black Marble#
NASA’s Black Marble represents a remarkable advancement in our ability to monitor and understand nocturnal light emissions on a global scale. By utilizing cutting-edge satellite technology and image processing techniques, the Black Marble dataset offers a comprehensive and high-resolution view of the Earth’s nighttime illumination patterns. To obtain the raster data conveniently and calculate zonal statistics, we use the BlackMarblePy [1] package developed by the World Bank.
Downloading VNP46A2 (Daily)#
VNP46A2 = bm_extract(
JOR_2,
product_id="VNP46A2",
date_range=pd.date_range("2023-01-01", "2024-02-15", freq="D"),
bearer=bearer,
aggfunc=["mean", "sum", "min", "max"],
)
Downloading VNP46A3 (Monthly)#
VNP46A3 = bm_extract(
JOR_2,
product_id="VNP46A3",
date_range=pd.date_range("2012-01-01", "2024-02-01", freq="MS"),
bearer=bearer,
aggfunc=["mean", "sum"],
)
VNP46A3_JOR_0 = bm_extract(
JOR_0,
product_id="VNP46A3",
date_range=pd.date_range("2012-01-01", "2024-02-01", freq="MS"),
bearer=bearer,
aggfunc=["mean", "sum"],
)
The latest update date available from NASA’s Black Marble:
'08 February 2024 (Week 06)'
Important
The VNP46A2 Daily Moonlight-adjusted Nighttime Lights (NTL) Product is available daily. However, due data quality, cloud cover or other factors, the data may not be available always at a specific location.
Methodology#
Creating a time series of weekly radiance using NASA’s Black Marble data involves several steps, including data acquisition, pre-processing, zonal statistics calculation, and time series generation. Below is a general methodology for this process.
Time Series Generation#
Organize the zonal statistics results in a tabular format, where each column corresponds to a specific zone, and rows represent the daily radiance values. Next, we aggregate the data on a weekly basis, computing the desired statistical metric (e.g., mean
or sum
) for each zone for each week. Finally, we will visualize the time series data to observe trends, patterns, and anomalies over time.
Weekly#
In this step, we compute a weekly aggregation of the zonal statistics by for each second-level administrative division and for each week. In this case, we W-SUN
and mean
as aggregate function.
Show code cell source
JO_2 = (
VNP46A2.pivot_table(index="date", columns=["NAME_2"], values=[VAR])
.resample("W")
.mean()
)
JO_1 = (
VNP46A2.pivot_table(index="date", columns=["NAME_1"], values=[VAR], aggfunc="mean")
.resample("W-SUN", label="right")
.mean()
)
JO_1
ntl_mean | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NAME_1 | Ajlun | Amman | Aqaba | Balqa | Irbid | Jarash | Karak | Ma`an | Madaba | Mafraq | Tafilah | Zarqa |
date | ||||||||||||
2023-01-01 | 6.553614 | 17.089626 | 1.337942 | 10.305475 | 15.036081 | 7.813278 | 1.182889 | 1.453644 | 3.091715 | 4.293278 | 0.516340 | 5.350969 |
2023-01-08 | 6.925726 | 16.851504 | 1.192398 | 13.652451 | 12.620506 | 6.193007 | 3.136338 | 1.442617 | 2.733074 | 4.487028 | 1.702175 | 7.120635 |
2023-01-15 | 7.014564 | 21.282728 | 1.179323 | 12.933054 | 14.062798 | 8.195653 | 3.717354 | 1.602577 | 3.134586 | 4.777348 | 2.034798 | 9.049575 |
2023-01-22 | 7.204723 | 20.469381 | 1.356341 | 12.043415 | 15.794291 | 7.917225 | 3.518542 | 1.921608 | 2.797661 | 5.420961 | 2.279622 | 8.663176 |
2023-01-29 | 8.780910 | 18.185698 | 1.133468 | 11.839344 | 16.362963 | 10.615097 | 3.555318 | 1.788156 | 3.056815 | 4.997560 | 2.280131 | 7.647737 |
2023-02-05 | 7.023463 | 14.807090 | 1.252475 | 10.034234 | 14.974453 | 7.312657 | 3.219223 | 1.848303 | 3.406766 | 4.326514 | 1.926031 | 7.371080 |
2023-02-12 | 8.318564 | 18.118729 | 1.184232 | 11.724532 | 12.786302 | 7.250184 | 2.652394 | 1.676834 | 2.809271 | 4.740587 | 1.677896 | 7.991622 |
2023-02-19 | 7.171500 | 20.389868 | 1.313050 | 12.389357 | 15.807822 | 7.938092 | 3.216915 | 1.803367 | 3.116871 | 5.345709 | 2.174536 | 8.657893 |
2023-02-26 | 7.573780 | 21.958042 | 1.378766 | 13.224041 | 16.343245 | 8.588145 | 3.903232 | 2.049574 | 3.393519 | 5.752626 | 2.396570 | 9.079799 |
2023-03-05 | 8.014141 | 22.074569 | 1.260965 | 13.546127 | 17.560595 | 8.883459 | 3.782953 | 1.953754 | 3.090220 | 5.721044 | 2.389548 | 9.246531 |
2023-03-12 | 7.557208 | 19.787281 | 1.116344 | 12.194766 | 15.682060 | 7.649423 | 3.381873 | 1.670901 | 2.795376 | 5.584482 | 2.042827 | 8.522241 |
2023-03-19 | 6.665508 | 12.158870 | 1.048582 | 9.234016 | 14.417531 | 5.612315 | 3.077479 | 1.551485 | 2.329972 | 4.175126 | 1.693649 | 7.431360 |
2023-03-26 | 7.434890 | 8.717388 | 0.800920 | 8.432571 | 11.163462 | 12.079061 | 2.562035 | 0.913057 | 1.956043 | 2.731027 | 1.057532 | 4.814900 |
2023-04-02 | 6.574686 | 20.861471 | 1.140732 | 12.024210 | 14.529601 | 7.910909 | 3.285034 | 1.802680 | 2.967938 | 4.914102 | 2.031900 | 9.293596 |
2023-04-09 | 7.326884 | 17.319678 | 1.165424 | 13.640539 | 17.665023 | 8.095854 | 2.853101 | 1.352534 | 2.977836 | 4.355196 | 1.698427 | 7.741399 |
2023-04-16 | 7.889825 | 24.887262 | 1.348776 | 14.070664 | 15.972971 | 7.509497 | 3.096332 | 1.925139 | 2.692917 | 4.992247 | 2.270459 | 9.868858 |
2023-04-23 | 8.558882 | 22.896442 | 1.499092 | 11.829104 | 18.172011 | 8.446800 | 3.048397 | 1.788419 | 2.627472 | 5.723006 | 1.921935 | 10.157876 |
2023-04-30 | 7.899432 | 22.874692 | 1.539177 | 13.680517 | 16.222887 | 7.936313 | 3.758394 | 2.020738 | 3.307109 | 5.928257 | 2.311702 | 8.697650 |
2023-05-07 | 7.982337 | 22.601721 | 1.033899 | 13.516930 | 18.344870 | 8.670102 | 3.885742 | 1.778918 | 3.441294 | 6.002452 | 2.236492 | 9.854427 |
2023-05-14 | 7.772844 | 21.851723 | 1.405304 | 13.170719 | 17.261466 | 8.679282 | 3.880688 | 2.036877 | 3.373683 | 5.914200 | 2.576136 | 9.715557 |
2023-05-21 | 8.939603 | 16.796040 | 1.275589 | 12.201684 | 15.319001 | 7.948092 | 3.803280 | 1.964169 | 3.617117 | 5.062599 | 2.116043 | 8.853832 |
2023-05-28 | 8.801076 | 17.224096 | 1.203578 | 11.154665 | 18.607510 | 8.296881 | 3.821440 | 1.424412 | 8.872302 | 6.479573 | 1.853927 | 14.516472 |
2023-06-04 | 8.172181 | 15.387304 | 1.441433 | 12.689785 | 18.568036 | 7.463718 | 3.081639 | 1.679680 | 3.234259 | 5.004378 | 1.815386 | 7.165242 |
2023-06-11 | 7.113150 | 14.603541 | 0.972269 | 11.408844 | 16.883187 | 8.550189 | 3.114113 | 1.808878 | 2.852778 | 4.972402 | 2.185785 | 6.735259 |
2023-06-18 | 7.669387 | 21.200813 | 1.349253 | 12.931719 | 17.841189 | 8.541935 | 3.891227 | 2.110864 | 3.290445 | 5.662483 | 2.400559 | 9.627447 |
2023-06-25 | 8.307181 | 24.225970 | 1.425167 | 14.599924 | 19.900998 | 9.354145 | 4.443062 | 2.411512 | 3.841191 | 6.358227 | 2.900355 | 10.347527 |
2023-07-02 | 8.011186 | 24.607739 | 1.352764 | 14.267570 | 20.224072 | 9.213605 | 4.350074 | 2.198869 | 3.837411 | 6.192990 | 2.695749 | 10.252297 |
2023-07-09 | 7.862403 | 23.594522 | 0.983204 | 14.112334 | 19.332294 | 9.004011 | 4.103980 | 1.952790 | 3.725700 | 5.990913 | 2.435325 | 9.930953 |
2023-07-16 | 8.212797 | 24.246511 | 1.415287 | 14.501791 | 20.373905 | 9.639081 | 4.542126 | 2.260104 | 4.000981 | 6.503189 | 2.791092 | 10.468213 |
2023-07-23 | 7.904835 | 23.493397 | 1.252254 | 14.258070 | 20.073049 | 9.247895 | 4.446398 | 2.263003 | 3.787536 | 6.055776 | 2.795497 | 9.777270 |
2023-07-30 | 7.775163 | 21.657060 | 1.225693 | 13.558004 | 18.925947 | 8.902467 | 4.215789 | 2.078058 | 3.762702 | 5.622017 | 2.554455 | 8.548337 |
2023-08-06 | 7.979066 | 24.608087 | 1.088537 | 14.642612 | 20.290297 | 9.458233 | 4.271531 | 2.036089 | 3.978651 | 6.138712 | 2.493140 | 10.148771 |
2023-08-13 | 7.794103 | 23.022145 | 1.226908 | 14.248380 | 18.559759 | 9.201307 | 4.392461 | 2.059791 | 4.137162 | 6.081089 | 2.735196 | 9.555307 |
2023-08-20 | 7.864048 | 20.404061 | 1.444041 | 12.750299 | 10.979055 | 8.359712 | 4.445966 | 2.005059 | 3.766656 | 5.042963 | 2.836460 | 10.148782 |
2023-08-27 | 8.204490 | 23.980610 | 1.390753 | 14.439368 | 19.083684 | 9.208852 | 4.833363 | 2.296364 | 4.333596 | 6.304918 | 3.044219 | 10.202704 |
2023-09-03 | 7.636809 | 22.606137 | 1.078973 | 13.355498 | 18.183366 | 8.347787 | 4.244322 | 1.845214 | 3.930025 | 5.845762 | 2.535126 | 9.452122 |
2023-09-10 | 7.865827 | 22.605973 | 1.262006 | 14.154798 | 18.693676 | 8.715887 | 4.421432 | 2.119020 | 4.182523 | 6.013685 | 2.815362 | 9.534347 |
2023-09-17 | 7.732312 | 22.255352 | 1.493893 | 13.788303 | 18.618095 | 8.714697 | 4.753989 | 2.296897 | 4.066721 | 6.127536 | 3.062951 | 9.558284 |
2023-09-24 | 8.308977 | 23.883825 | 1.471181 | 14.505443 | 18.799702 | 9.170241 | 4.826404 | 2.389610 | 4.334535 | 6.575271 | 3.169624 | 10.150605 |
2023-10-01 | 7.855340 | 26.386223 | 1.292625 | 13.776799 | 15.625671 | 8.483750 | 4.988369 | 1.632651 | 3.891433 | 5.690511 | 3.334503 | 11.908721 |
2023-10-08 | 8.269542 | 16.668704 | 1.077456 | 13.816568 | 13.580138 | 7.233172 | 3.229418 | 1.464934 | 4.254577 | 4.612727 | 2.352224 | 7.768185 |
2023-10-15 | 7.475188 | 26.809686 | 1.558039 | 11.700221 | 17.023449 | 8.046034 | 4.611878 | 2.216917 | 3.769920 | 5.920211 | 2.878260 | 7.840910 |
2023-10-22 | 7.774611 | 21.972477 | 1.585803 | 13.017458 | 18.101572 | 8.869439 | 4.282855 | 2.349022 | 3.821007 | 6.073596 | 3.115314 | 10.451683 |
2023-10-29 | 9.788059 | 24.729888 | 1.410979 | 14.837356 | 21.147902 | 9.348636 | 4.317457 | 2.455011 | 4.773784 | 5.575718 | 3.134979 | 10.644845 |
2023-11-05 | 8.636695 | 21.806738 | 1.420556 | 14.887323 | 19.191005 | 9.409041 | 4.856956 | 2.202097 | 5.722046 | 6.751051 | 2.844641 | 10.832408 |
2023-11-12 | 7.922564 | 21.442736 | 1.389055 | 13.545763 | 16.844445 | 8.756429 | 4.333543 | 2.206856 | 5.188855 | 5.594353 | 3.118133 | 8.380319 |
2023-11-19 | 7.480286 | 18.695148 | 1.494026 | 10.963753 | 18.442322 | 8.774380 | 3.695956 | 2.102390 | 4.054361 | 5.308693 | 2.454161 | 8.017294 |
2023-11-26 | 6.861697 | 19.395793 | 1.353484 | 13.157533 | 18.219133 | 7.167230 | 3.897891 | 1.588863 | 4.418614 | 5.090993 | 2.570587 | 7.003433 |
2023-12-03 | 7.461221 | 20.722550 | 2.329026 | 13.057442 | 17.393860 | 7.720167 | 3.746143 | 1.885457 | 4.102386 | 5.644296 | 2.607277 | 9.004224 |
2023-12-10 | 6.681664 | 17.893838 | 1.383928 | 11.566957 | 13.587801 | 6.283298 | 3.515919 | 1.843646 | 2.999329 | 5.435706 | 2.178366 | 8.346085 |
2023-12-17 | 7.447806 | 17.550542 | 1.112721 | 11.738803 | 14.610322 | 6.650827 | 3.319307 | 1.699108 | 3.271925 | 5.382364 | 1.963749 | 8.064997 |
2023-12-24 | 6.339929 | 15.993737 | 1.454995 | 13.273185 | 16.051027 | 6.425750 | 3.203037 | 1.882359 | 4.134357 | 3.450228 | 2.352680 | 6.547154 |
2023-12-31 | 6.552213 | 20.643292 | 1.083800 | 12.194779 | 14.728168 | 6.982223 | 3.837785 | 1.689556 | 3.402771 | 4.797841 | 2.465967 | 7.489126 |
2024-01-07 | 7.155472 | 15.330091 | 1.404368 | 12.232883 | 14.322415 | 7.479134 | 3.727843 | 2.047969 | 3.137475 | 5.187520 | 2.649125 | 6.490157 |
2024-01-14 | 6.044978 | 16.222327 | 1.379840 | 10.919437 | 11.433778 | 6.354409 | 4.276449 | 2.100772 | 3.290307 | 4.449964 | 2.267988 | 7.245366 |
2024-01-21 | 5.995695 | 15.131319 | 1.273858 | 10.030166 | 15.861356 | 6.117911 | 3.092834 | 2.009539 | 4.208126 | 6.031729 | 2.083615 | 7.506417 |
2024-01-28 | 8.296833 | 16.189207 | 0.982500 | 11.921734 | 13.485584 | 9.709556 | 2.761093 | 1.732280 | 3.207788 | 3.664505 | 2.147136 | 7.969058 |
2024-02-04 | 7.041361 | 14.315559 | 1.113992 | 12.715988 | 14.829829 | 7.342199 | 2.562630 | 1.891801 | 3.241188 | 3.429573 | 2.872636 | 6.504966 |
2024-02-11 | 7.073317 | 16.995336 | 1.132566 | 12.161524 | 15.262148 | 6.569613 | 3.005733 | 1.747079 | 2.878806 | 4.823398 | 1.747239 | 8.061008 |
Now, we visualize,
Show code cell source
p = figure(
title="Jordan: Weekly Nighttime Lights",
width=800,
height=700,
x_axis_label="Date",
x_axis_type="datetime",
y_axis_label=r"Radiance [nW $$cm^{-2}$$ $$sr^{-1}$$]",
tools="pan,wheel_zoom,box_zoom,reset,save,box_select",
)
p.add_layout(
Title(
text="Weekly Average Radiance since 2023",
text_font_size="12pt",
text_font_style="italic",
),
"above",
)
p.add_layout(
Title(
text=f"Data Source: NASA Black Marble. Creation date: {datetime.today().strftime('%d %B %Y')}. Feedback: datalab@worldbank.org.",
text_font_size="10pt",
text_font_style="italic",
),
"below",
)
p.add_layout(Legend(), "right")
p.add_tools(
HoverTool(
tooltips=[
("Week", "@x{%W} (@x{%F})"),
("Radiance", "@y{0.00}"),
],
formatters={"@x": "datetime"},
)
)
renderers = []
for column, color in zip(data.columns, cc.b_glasbey_category10):
try:
r = p.line(
data.index,
data[column],
legend_label=column[1],
line_color=color,
line_width=2,
)
r.muted = True
renderers.append(r)
except Exception:
pass
renderers[0].muted = False
p.legend.location = "bottom_left"
p.legend.click_policy = "mute"
p.title.text_font_size = "16pt"
p.sizing_mode = "scale_both"
output_notebook()
show(p)
Monthly#
In this step, we compute a monthy aggregation of the zonal statistics by for each second-level administrative division and for each month. Additionally, we add the VNP46A3 monthly composite (when available) in grey.
Findings#
Percent Change in NTL Radiance#
Baseline Comparison#
In this exploratory analysis, we conducted analysis of NTL radiance trends, comparing the observed average radiance levels to a 6-month baseline (Jan-Jun 2023) for each second-level administrative division.
Show code cell source
data = 100 * (
JO_1 / JO_1[(JO_1.index >= "2023-01-01") & (JO_1.index < "2023-06-30")].mean()
- 1 # scale by 2022 baseline
)
pd.set_option("display.max_rows", None)
data[data.index >= "2023-01-01"].style.map(
lambda x: "background-color: #DF4661" if x < 0 else "background-color: white"
)
ntl_mean | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NAME_1 | Ajlun | Amman | Aqaba | Balqa | Irbid | Jarash | Karak | Ma`an | Madaba | Mafraq | Tafilah | Zarqa |
date | ||||||||||||
2023-01-01 00:00:00 | -14.480629 | -10.167625 | 7.516717 | -15.866455 | -6.451951 | -4.828312 | -64.595991 | -17.443942 | -5.216051 | -16.524670 | -74.424382 | -37.757903 |
2023-01-08 00:00:00 | -9.624880 | -11.419320 | -4.179212 | 11.458138 | -21.480619 | -24.564439 | -6.129012 | -18.070162 | -16.211049 | -12.757538 | -15.686957 | -17.173275 |
2023-01-15 00:00:00 | -8.465611 | 11.873603 | -5.229873 | 5.585003 | -12.507300 | -0.170682 | 11.260878 | -8.985642 | -3.901734 | -7.112775 | 0.788698 | 5.264030 |
2023-01-22 00:00:00 | -5.984184 | 7.598207 | 8.995282 | -1.677976 | -1.734691 | -3.562151 | 5.310397 | 9.132923 | -14.230996 | 5.401162 | 12.915434 | 0.769456 |
2023-01-29 00:00:00 | 14.583784 | -4.406069 | -8.914784 | -3.344008 | 1.803341 | 29.299992 | 6.411108 | 1.553853 | -6.285992 | -2.831120 | 12.940653 | -11.042057 |
2023-02-05 00:00:00 | -8.349491 | -22.165872 | 0.648608 | -18.080858 | -6.835373 | -10.926256 | -3.648252 | 4.969719 | 4.442592 | -15.878456 | -4.598810 | -14.260110 |
2023-02-12 00:00:00 | 8.550540 | -4.758095 | -4.835366 | -4.281324 | -20.449108 | -11.687216 | -20.613503 | -4.768417 | -13.875047 | -7.827513 | -16.889557 | -7.042010 |
2023-02-19 00:00:00 | -6.417728 | 7.180244 | 5.516355 | 1.146279 | -1.650509 | -3.307977 | -3.717336 | 2.417688 | -4.444823 | 3.938022 | 7.710252 | 0.708004 |
2023-02-26 00:00:00 | -1.168298 | 15.423425 | 10.797285 | 7.960613 | 1.680666 | 4.610171 | 16.824230 | 16.400428 | 4.036467 | 11.849826 | 18.708147 | 5.615593 |
2023-03-05 00:00:00 | 4.578058 | 16.035951 | 1.330886 | 10.590109 | 9.254494 | 8.207313 | 13.224265 | 10.958555 | -5.261883 | 11.235757 | 18.360362 | 7.555002 |
2023-03-12 00:00:00 | -1.384551 | 4.012718 | -10.290823 | -0.442353 | -2.432946 | -6.824190 | 1.219901 | -5.105342 | -14.301027 | 8.580550 | 1.186360 | -0.869885 |
2023-03-19 00:00:00 | -13.020505 | -36.086360 | -15.736235 | -24.613811 | -10.300302 | -31.637720 | -7.890660 | -11.887290 | -28.569123 | -18.821924 | -16.109284 | -13.558933 |
2023-03-26 00:00:00 | -2.980696 | -54.176664 | -35.638220 | -31.156785 | -30.545726 | 47.132184 | -23.317972 | -48.145239 | -40.032801 | -46.899917 | -47.617777 | -43.993422 |
2023-04-02 00:00:00 | -14.205665 | 9.659250 | -8.331024 | -1.834765 | -9.603053 | -3.639086 | -1.678511 | 2.378676 | -9.010735 | -4.453834 | 0.645156 | 8.102464 |
2023-04-09 00:00:00 | -4.390092 | -8.958347 | -6.346761 | 11.360889 | 9.904200 | -1.386317 | -14.606314 | -23.186197 | -8.707270 | -15.320776 | -15.872641 | -9.952591 |
2023-04-16 00:00:00 | 2.955833 | 30.820995 | 8.387291 | 14.872413 | -0.623020 | -8.528596 | -7.326401 | 9.333425 | -17.442167 | -2.934425 | 12.461573 | 14.793866 |
2023-04-23 00:00:00 | 11.686495 | 20.356162 | 20.466713 | -3.427603 | 13.058462 | 2.888477 | -8.761082 | 1.568800 | -19.448523 | 11.273904 | -4.801691 | 18.155709 |
2023-04-30 00:00:00 | 3.081205 | 20.241832 | 23.687899 | 11.687271 | 0.931846 | -3.329647 | 12.489209 | 14.762766 | 1.387356 | 15.264652 | 14.504438 | 1.170455 |
2023-05-07 00:00:00 | 4.163051 | 18.806948 | -16.916145 | 10.351751 | 14.133915 | 5.608459 | 16.300743 | 1.029207 | 5.501142 | 16.707259 | 10.779105 | 14.626012 |
2023-05-14 00:00:00 | 1.429335 | 14.864550 | 12.929900 | 7.525298 | 7.393443 | 5.720285 | 16.149486 | 15.679316 | 3.428362 | 14.991352 | 27.602511 | 13.010684 |
2023-05-21 00:00:00 | 16.654594 | -11.710869 | 2.506040 | -0.385877 | -4.691740 | -3.186166 | 13.832665 | 11.550078 | 10.891418 | -1.566556 | 4.812947 | 2.987159 |
2023-05-28 00:00:00 | 14.846929 | -9.460774 | -3.280753 | -8.933705 | 15.767949 | 1.062341 | 14.376191 | -19.104116 | 172.001737 | 25.984048 | -8.170332 | 68.854592 |
2023-06-04 00:00:00 | 6.640355 | -19.115953 | 15.833205 | 3.598966 | 15.522359 | -9.086217 | -7.766157 | -4.606779 | -0.846031 | -2.698557 | -10.079328 | -16.654402 |
2023-06-11 00:00:00 | -7.179140 | -23.235840 | -21.868712 | -6.858590 | 5.039953 | 4.147828 | -6.794199 | 2.730692 | -12.541247 | -3.320289 | 8.267476 | -21.655940 |
2023-06-18 00:00:00 | 0.079295 | 11.443014 | 8.425655 | 5.574107 | 11.000232 | 4.047296 | 16.464909 | 19.881222 | 0.876480 | 10.097136 | 18.905759 | 11.985790 |
2023-06-25 00:00:00 | 8.401993 | 27.344887 | 14.526073 | 19.193271 | 23.815477 | 13.940625 | 32.981407 | 36.955775 | 17.760944 | 23.624683 | 43.661888 | 20.361713 |
2023-07-02 00:00:00 | 4.539498 | 29.351674 | 8.707783 | 16.479951 | 25.825507 | 12.228747 | 30.198261 | 24.879270 | 17.645047 | 20.411936 | 33.527246 | 19.254009 |
2023-07-09 00:00:00 | 2.598008 | 24.025654 | -20.989924 | 15.212609 | 20.277248 | 9.675726 | 22.832656 | 10.903818 | 14.220290 | 16.482897 | 20.627802 | 15.516156 |
2023-07-16 00:00:00 | 7.170361 | 27.452861 | 13.732107 | 18.392123 | 26.757704 | 17.411363 | 35.946405 | 28.356932 | 22.659690 | 26.443211 | 38.249841 | 21.765522 |
2023-07-23 00:00:00 | 3.151709 | 23.494083 | 0.630821 | 16.402389 | 24.885908 | 12.646422 | 33.081265 | 28.521573 | 16.116008 | 17.744033 | 38.468042 | 13.728525 |
2023-07-30 00:00:00 | 1.459598 | 13.841298 | -1.503590 | 10.687072 | 17.749127 | 8.438848 | 26.179090 | 18.018112 | 15.354673 | 9.310359 | 26.528614 | -0.566338 |
2023-08-06 00:00:00 | 4.120365 | 29.353500 | -12.525418 | 19.541776 | 26.237531 | 15.208504 | 27.847460 | 15.634567 | 21.975089 | 19.356598 | 23.491525 | 18.049800 |
2023-08-13 00:00:00 | 1.706748 | 21.016928 | -1.405928 | 16.323283 | 15.470862 | 12.078948 | 31.466917 | 16.980684 | 26.834630 | 18.236202 | 35.481170 | 11.146669 |
2023-08-20 00:00:00 | 2.619470 | 7.254852 | 16.042789 | 4.092998 | -31.693023 | 1.827682 | 33.068330 | 13.872304 | 15.475878 | -1.948352 | 40.497012 | 18.049930 |
2023-08-27 00:00:00 | 7.061958 | 26.055142 | 11.760606 | 17.882505 | 18.730502 | 12.170857 | 44.663170 | 30.416229 | 32.856795 | 22.588167 | 50.787869 | 18.677143 |
2023-09-03 00:00:00 | -0.345814 | 18.830165 | -13.293977 | 9.033826 | 13.129108 | 1.682422 | 27.033095 | 4.794306 | 20.484359 | 13.660694 | 25.571176 | 9.946422 |
2023-09-10 00:00:00 | 2.642681 | 18.829298 | 1.414500 | 15.559279 | 16.304036 | 6.166162 | 32.334033 | 20.344422 | 28.225297 | 16.925655 | 39.452002 | 10.902861 |
2023-09-17 00:00:00 | 0.900419 | 16.986247 | 20.048884 | 12.567227 | 15.833807 | 6.151664 | 42.287510 | 30.446530 | 24.675102 | 19.139282 | 51.715711 | 11.181292 |
2023-09-24 00:00:00 | 8.425436 | 25.546386 | 18.223776 | 18.421937 | 16.963687 | 11.700538 | 44.454885 | 35.711893 | 32.885593 | 27.844719 | 56.999459 | 18.071124 |
2023-10-01 00:00:00 | 2.505838 | 38.700353 | 3.875066 | 12.473310 | -2.783771 | 3.338553 | 49.302534 | -7.277660 | 19.301233 | 10.642092 | 65.166344 | 38.521416 |
2023-10-08 00:00:00 | 7.910844 | -12.380216 | -13.415850 | 12.797981 | -15.510203 | -11.894437 | -3.343097 | -16.802728 | 30.434274 | -10.313541 | 16.511606 | -9.641008 |
2023-10-15 00:00:00 | -2.454835 | 40.926306 | 25.203688 | -4.479803 | 5.912604 | -1.993158 | 38.034106 | 25.904263 | 15.575950 | 15.108213 | 42.567481 | -8.795084 |
2023-10-22 00:00:00 | 1.452392 | 15.499301 | 27.434775 | 6.274078 | 12.620225 | 8.036538 | 28.186390 | 33.406837 | 17.142146 | 18.090519 | 54.309387 | 21.573243 |
2023-10-29 00:00:00 | 27.726254 | 29.993756 | 13.385958 | 21.131664 | 31.573184 | 13.873523 | 29.222025 | 39.426196 | 46.351810 | 8.410142 | 55.283438 | 23.820100 |
2023-11-05 00:00:00 | 12.701891 | 14.628087 | 14.155586 | 21.539588 | 19.398205 | 14.609307 | 45.369318 | 25.062588 | 75.423060 | 31.262448 | 40.902277 | 26.001814 |
2023-11-12 00:00:00 | 3.383060 | 12.714694 | 11.624150 | 10.587138 | 4.798914 | 6.659987 | 29.703495 | 25.332846 | 59.076822 | 8.772471 | 54.449012 | -2.520713 |
2023-11-19 00:00:00 | -2.388316 | -1.728124 | 20.059551 | -10.492297 | 14.740225 | 6.878649 | 10.620424 | 19.399987 | 24.296160 | 3.218318 | 21.560803 | -6.743396 |
2023-11-26 00:00:00 | -10.460406 | 1.954845 | 8.765686 | 7.417646 | 13.351634 | -12.697667 | 16.664363 | -9.764531 | 35.463212 | -1.014495 | 27.327662 | -18.536550 |
2023-12-03 00:00:00 | -2.637096 | 8.929002 | 87.159979 | 6.600504 | 8.217141 | -5.962466 | 12.122533 | 7.079810 | 25.768489 | 9.743520 | 29.145013 | 4.736506 |
2023-12-10 00:00:00 | -12.809691 | -5.940244 | 11.212098 | -5.567766 | -15.462529 | -23.464637 | 5.231902 | 4.705284 | -8.048375 | 5.687858 | 7.899994 | -2.918915 |
2023-12-17 00:00:00 | -2.812152 | -7.744797 | -10.582034 | -4.164819 | -9.100840 | -18.987846 | -0.652715 | -3.503433 | 0.308733 | 4.650711 | -2.730571 | -6.188516 |
2023-12-24 00:00:00 | -17.269051 | -15.928212 | 16.923073 | 8.361823 | -0.137388 | -21.729462 | -4.132693 | 6.903880 | 26.748656 | -32.916307 | 16.534172 | -23.843958 |
2023-12-31 00:00:00 | -14.498914 | 8.512381 | -12.906071 | -0.442243 | -8.367650 | -14.951192 | 14.865403 | -4.045911 | 4.320110 | -6.714321 | 22.145591 | -12.887011 |
2024-01-07 00:00:00 | -6.626870 | -19.416694 | 12.854687 | -0.131166 | -10.892075 | -8.898436 | 11.574830 | 16.309264 | -3.813163 | 0.862316 | 31.217860 | -24.506951 |
2024-01-14 00:00:00 | -21.117924 | -14.726618 | 10.883595 | -10.854097 | -28.863935 | -22.598447 | 27.994664 | 19.308093 | 0.872270 | -13.478190 | 12.339180 | -15.722406 |
2024-01-21 00:00:00 | -21.761022 | -20.461548 | 2.366894 | -18.114076 | -1.317442 | -25.479174 | -7.431081 | 14.126723 | 29.010219 | 17.276498 | 3.206732 | -12.685878 |
2024-01-28 00:00:00 | 8.266964 | -14.900713 | -21.046533 | -2.671374 | -16.098480 | 18.269806 | -17.360120 | -1.619478 | -1.657552 | -28.750074 | 6.353070 | -7.304477 |
2024-02-04 00:00:00 | -8.115935 | -24.749628 | -10.479851 | 3.812884 | -7.735160 | -10.566402 | -23.300170 | 7.440072 | -0.633604 | -33.317915 | 42.288929 | -24.334685 |
2024-02-11 00:00:00 | -7.698925 | -10.663263 | -8.987248 | -0.713741 | -5.045457 | -19.977097 | -10.038029 | -0.779039 | -11.743284 | -6.217416 | -13.454828 | -6.234919 |
Show code cell source
p = figure(
title="Jordan: Percent Change in Nighttime Lights Radiance",
width=800,
height=800,
x_axis_label="Date",
x_axis_type="datetime",
y_axis_label="Radiance Percent Change (%)",
tools="pan,wheel_zoom,box_zoom,reset,save,box_select",
)
p.xaxis.major_label_orientation = math.pi / 4
p.add_layout(
Title(
text="Percent change (compared to 2022) in NTL radiance for each second-level administrative division",
text_font_size="12pt",
text_font_style="italic",
),
"above",
)
p.add_layout(
Title(
text=f"Source: NASA Black Marble. Creation date: {datetime.today().strftime('%d %B %Y')}. Feedback: datalab@worldbank.org.",
text_font_size="10pt",
text_font_style="italic",
),
"below",
)
p.add_layout(Legend(), "right")
p.renderers.extend(
[
Span(
location=datetime(2023, 10, 7),
dimension="height",
line_color="gray",
line_width=1.5,
line_dash=(4, 4),
),
]
)
p.add_tools(
HoverTool(
tooltips=[
("Week", "@x{%W} (@x{%F})"),
("Percent Change", "@y{0.00}% (2022 baseline)"),
],
formatters={"@x": "datetime"},
)
)
renderers = []
for column, color in zip(data.columns, cc.b_glasbey_category10):
r = p.line(
data.index,
data[column],
legend_label=str(column[1]),
line_color=color,
line_width=2,
)
r.visible = False
renderers.append(r)
renderers[0].visible = True
p.legend.location = "bottom_left"
p.legend.click_policy = "hide"
p.title.text_font_size = "12pt"
p.sizing_mode = "scale_both"
show(p)
Week over Week Comparison#
In this exploratory analysis, we conducted analysis of NTL radiance trends, comparing the observed average radiance levels week over week (WOW) for each second-level administrative division.
Show code cell source
p = figure(
title="Jordan: Percent Change in Nighttime Lights Radiance",
width=800,
height=800,
x_axis_label="Date",
x_axis_type="datetime",
y_axis_label="Radiance Percent Change (%)",
tools="pan,wheel_zoom,box_zoom,reset,save,box_select",
)
p.xaxis.major_label_orientation = math.pi / 4
p.add_layout(
Title(
text="Percent change week over week in NTL radiance for each second-level administrative division",
text_font_size="12pt",
text_font_style="italic",
),
"above",
)
p.add_layout(
Title(
text=f"Source: NASA Black Marble. Creation date: {datetime.today().strftime('%d %B %Y')}. Feedback: datalab@worldbank.org.",
text_font_size="10pt",
text_font_style="italic",
),
"below",
)
p.add_layout(Legend(), "right")
p.renderers.extend(
[
Span(
location=datetime(2023, 10, 7),
dimension="height",
line_color="gray",
line_width=1.5,
line_dash=(4, 4),
),
]
)
p.add_tools(
HoverTool(
tooltips=[
("Week", "@x{%W} (@x{%F})"),
("Percent Change", "@y{0.00}% (WOW)"),
],
formatters={"@x": "datetime"},
)
)
renderers = []
for column, color in zip(data.columns, cc.b_glasbey_category10):
r = p.line(
data.index,
data[column],
legend_label=str(column[1]),
line_color=color,
line_width=2,
)
r.visible = False
renderers.append(r)
renderers[0].visible = True
p.legend.location = "bottom_left"
p.legend.click_policy = "hide"
p.title.text_font_size = "12pt"
p.sizing_mode = "scale_both"
show(p)
National Weekly Sum of Lights#
Limitations#
See also
References#
- 1
Gabriel Stefanini Vicente and Robert Marty. BlackMarblePy: Georeferenced Rasters and Statistics of Nighttime Lights from NASA Black Marble. February 2024. URL: https://doi.org/10.5281/zenodo.10667925, doi:10.5281/zenodo.10667925.